# **APPENDIX D**

Appendix D - Subsidence Workshop Report

AECOM

Tahmoor South Project Environmental Impact Statement

This page has been left blank intentionally.

# TAHMOOR UNDERGROUND GLENCORE

July 2014 **Tahmoor South Project** Subsidence Workshop

Tahmoor Underground

### Table of Contents

| 1   | INTRODUCTION               | 3  |
|-----|----------------------------|----|
| 2   | SOUTHERN COALFIELD INQUIRY | 4  |
| 3   | SUBSIDENCE WORKSHOP        | 6  |
| APF | ENDIX 1                    | 9  |
| APF | ENDIX 2                    | 10 |
| APF | ENDIX 3                    | 11 |
| APF | ENDIX 4                    | 12 |
| APF | ENDIX 5                    | 13 |
| APF | ENDIX 6                    | 14 |
|     |                            |    |

# 1 INTRODUCTION

Tahmoor Coal owns and operates the Tahmoor Mine, an underground coal mine approximately 80 km south-west of Sydney, in the Southern Coalfields of NSW. Tahmoor Coal produces up to 2 million tonnes per annum (Mtpa) of product coal from its existing operations at the Tahmoor Mine, and undertakes underground mining under existing development consents, licences and the conditions of relevant mining leases.

Tahmoor Coal is seeking approval for the Tahmoor South Project (the Project), being the extension of underground coal mining at Tahmoor Mine, to the south and east of the existing Tahmoor Mine surface facilities area. The proposed development will continue to be accessed via the existing surface facilities at Tahmoor Mine, located between the towns of Tahmoor and Bargo.

The proposed development seeks to extend the life of underground mining at Tahmoor Mine until approximately 2040. The proposal will enable mining to be undertaken within the southern portion of Tahmoor Coal's existing lease areas and for operations and employment of the current workforce to continue for a further 18 years.

The proposed development will extend mining at Tahmoor Mine within the Project Area, using longwall methods, with the continued use of ancillary infrastructure at the existing Tahmoor Mine surface facilities area. The Project Area is adjacent and to the south of the Existing Tahmoor Approved Mining Area. It also overlaps a small area of the Existing Tahmoor Approved Mining Area comprising the surface facilities area, historical workings and other existing mine infrastructure.

The proposed development will use longwall mining to extract coal from the Bulli seam within the bounds of CCL 716 and CCL 747. Coal extraction of up to 4.4 Mtpa ROM is proposed as part of the development. Once the coal has been extracted and brought to the surface, it will be processed at Tahmoor Mine's existing Coal Handling and Preparation Plant (CHPP) and then transported via the existing rail loop, the Main Southern Railway and the Moss Vale to Unanderra Railway to Port Kembla for export to the international market.

The components of the proposed development comprise:

- Mine development including pit bottom redevelopment, vent shaft construction, pregas drainage and service connection
- Longwall mining in the Central and Eastern Domains
- Upgrades to the existing surface facilities area including:
  - o upgrades to the CHPP
  - o expansion of the existing reject emplacement area (REA)
  - o additional mobile plant for coal handling
  - o additions to the existing bathhouses, stores and associated access ways
  - o upgrades to offsite service infrastructure, including electrical supply
- Rail transport of product coal to Port Kembla
- On-going exploration
- Mine closure and rehabilitation
- Environmental management

# 2 SOUTHERN COALFIELD INQUIRY

The Minister for Planning and the Minister for Primary Industries, during December 2006, directed that an Independent Expert Panel be constituted to:

- 1. Undertake a strategic review of the impacts of underground mining in the Southern Coalfield on significant natural features (i.e. rivers and significant streams, swamps and cliff lines), with particular emphasis on risks to water flows, water quality and aquatic ecosystems; and
- 2. Provide advice on best practice in regard to:
  - a) assessment of subsidence impacts;
  - b) avoiding and/or minimising adverse impacts on significant natural features; and
  - *c)* management, monitoring and remediation of subsidence and subsidence-related impacts; and
- 3. Report on the social and economic significance to the region and the State of the coal resources in the Southern Coalfield.

The terms of reference required the Panel to focus its examination on the subsidencerelated impacts of underground mining on *'significant natural features'*. These features were defined as 'rivers and significant streams, swamps and cliff lines'. Other natural features, for example plains, plateaus and general landforms, and any impacts of subsidence on infrastructure, buildings or other structures were not within the Panel's terms of reference. Similarly, impacts associated with constructing and operating surface facilities were considered beyond the scope of the inquiry.

It was also considered that certain values contributed to the significance of some natural features. These include values in respect of Aboriginal heritage, non-Aboriginal heritage, conservation, scenery, recreation and similar values.

The purpose of the Southern Coalfields Inquiry was to:

- 1. Undertake a strategic review of the impacts of underground mining in the Southern Coalfields on significant natural features (i.e. rivers and significant streams, swamps and cliff lines), with particular emphasis on risks to water flows, water quality and aquatic ecosystems;
- 2. Provide advice on best practice in regard to:
  - a. Assessment of subsidence impacts;
  - b. Avoiding and/or minimising adverse impacts on significant natural features;
  - c. Management, monitoring and remediation of subsidence and subsidencerelated impacts;
- 3. Report on the social and economic significance to the region and the State of the coal resources in the Southern Coalfields.

The Panel used the term *subsidence effects* to describe subsidence deformation of the ground mass caused by mining, including all mining-induced ground movements such as vertical and horizontal displacements and curvature as measured by tilts and strains. The term *subsidence impact* was used to describe the physical changes to the ground and its surface caused by these subsidence effects.

The *environmental consequences* of these impacts include loss of surface flows to the subsurface, loss of standing pools, adverse water quality impacts, development of iron bacterial mats, cliff falls and rock falls, damage to Aboriginal heritage sites and impacts on aquatic ecology.

Due to the geology and geomorphology of the Southern Coalfield, non-conventional subsidence effects (including valley closure, upsidence and regional far-field horizontal displacement) regularly occur. Since unpredicted impacts of subsidence on rivers and

significant streams became apparent, the coal mining industry has made significant advances in its understanding of and ability to predict non-conventional subsidence effects.

The majority of subsidence impacts on significant natural features are associated with valley closure and upsidence effects, leading to impacts on rivers and significant streams and in particular the cracking of stream beds and underlying strata.

This has the potential to result in:

- loss or redirection of surface water flows;
- changes in water quality (particularly ferruginous springs and/or development of iron bacterial mats);
- loss of ecosystem functionality (e.g. loss of pool integrity and connectivity and changes in water quality); and
- loss of visual amenity.

The Southern Coalfields Inquiry in considering the natural features of the Southern Coalfields and the impacts of subsidence, concluded:

- the site conditions within the Southern Coalfields, a dissected landscape of incised rivers and gorge country as well as geological features including faults and dykes, give rise to non-conventional subsidence impacts such as valley closure, upsidence and regional far-field horizontal displacement; and
- it is the valley closure and upsidence effects from underground mining that create the majority of impacts on significant natural features such as the cracking of stream beds, rock falls from cliff lines and alteration of groundwater chemistry in shallow aquifers.

The Southern Coalfields Inquiry made recommendations regarding best practice in relation to the assessment of subsidence impacts, ways to minimise adverse impacts on significant natural features, and the management, monitoring and remediation of subsidence and subsidence related impacts.

# **3 SUBSIDENCE WORKSHOP**

The principles of mine design for the proposed development involved a risk management approach in the context of recent publications regarding impacts of longwall mining in the Southern Coalfields. These include:

- the Southern Coalfields Inquiry (2006); and
- the Planning Assessment Commission reports for Metropolitan Coal Project and the Bulli Seam Operations Project.

The mine design for the proposed development took into account the geological constraints, the sensitivity and significance of the surface features as well as Risk Management Zones (RMZs) developed for those surface features.

To assist with the identification of the RMZs, the subsidence engineers and technical specialists for hydrology, geomorphology, groundwater, ecology and heritage collaborated during a three day long field visit to waterways within the Project Area. Subsequent to the field visit, two qualitative risk workshops were undertaken involving the relevant stakeholders.

The scope of the risk workshops was to identify significant natural features and development of associated RMZs. In accordance with the Southern Coalfields Inquiry, the risk workshop was limited to consideration of the natural features, including rivers, streams, swamps, cliff lines, Aboriginal heritage, conservation, scenic and recreational values. For each natural feature the potential consequences and causes were considered and significance and sensitivity assigned.

A key outcome of the collaboration between technical specialists included attendance at a subsidence workshop to facilitate the development of the RMZs.

The subsidence workshop was held over 3 days from 6 to 8 March 2013 and a follow session on 12 December 2013 for the following:

- Inspections of natural features within the Project Area led by the geomorphology technical specialist (Fluvial Systems Pty Ltd). Site inspections of natural stream catchments at Cow Dogtrap Creeks and Mermaid Pools. Site inspections of disturbed stream catchments along Eliza Creek was also conducted;
- Inspections of ecological features and riparian vegetation within the Project Area were conducted, led by the ecology technical specialist (Niche Environment & Heritage Pty Ltd). Site inspections conducted within Cow, Dogtrap and Eliza Creeks;
- Inspections of aboriginal heritage features within the Project Area were conducted, led by the aboriginal heritage technical specialist (Niche Environment & Heritage Pty Ltd). Site inspections conducted within Cow, Dogtrap and Eliza Creeks;
- Inspections of subsidence impacted streams at Myrtle and Redbank Creeks were conducted, led by the Tahmoor North's hydrogeology technical specialist (Geoterra Pty Ltd);
- Subsidence Workshop 1, a whole day workshop held to discuss and develop RMZs, led by a facilitator from SLR Consulting Australia Pty Ltd;
- Subsidence Workshop 2, a half day workshop held as a concluding session to discuss technical specialist reports in relation to RMZs developed and review the need for modifications to the mine plan. This workshop was also led by a facilitator from SLR Consulting Australia Pty Ltd

The Subsidence Workshop Risk Management Report is contained within Appendix 1.

The agenda for Subsidence Workshop 1 is contained within Appendix 2 and the workshop presentations are contained within Appendix 3.

Site photos of the Project team during the site inspections are outlined within Appendix 4.

The Subsidence Workshop 2 presentation is contained within Appendix 5.

The working group that took part in the workshops was made up of key stakeholders involved in the proposed development including Tahmoor Coal employees, technical specialists and EIS authors. The involvement of the key stakeholders ensured that the significance and sensitivity of natural features identified through the process were ranked by experienced technical specialists, who understand the proposed development, and who also have the authority to action key findings and outcomes that resulted from the risk workshop.

The workshop technical specialist attendees and area of technical expertise are outlined on Table 1.

| Technical Specialist            | Discipline                              | Attended<br>Workshop<br>1 | Attended<br>Workshop<br>2 |
|---------------------------------|-----------------------------------------|---------------------------|---------------------------|
| AECOM                           | Environmental Planning, EIS Preparation | Yes                       | Yes                       |
| Fluvial Systems                 | Geomorphology                           | Yes                       | No                        |
| Gilbert & Associates            | Surface Water Resources                 | Yes                       | Yes                       |
| HydroSimulations                | Groundwater                             | Yes                       | Yes                       |
| MSEC                            | Subsidence                              | Yes                       | Yes                       |
| SCT                             | Geotechnical                            | Yes                       | Yes                       |
| Geoterra                        | Hydrogeology, hydrology, geochemistry   | Yes                       | No                        |
| Niche Environment &<br>Heritage | Ecology and Aboriginal Heritage         | Yes                       | Yes                       |
| SLR Consulting                  | Facilitator                             | Yes                       | Yes                       |

#### Table 1: Subsidence Workshop - Technical Specialist

During the risk workshop the group conducted the following activities:

- identification of key elements and associated risk descriptions and consequences;
- identification of the cause;
- achieving group consensus on the significance and sensitivity for each potential risk; and
- identification of appropriate treatment plans.

During the risk workshops a traffic light approach was adopted and each element was ranked as either having a low, medium of high significance and sensitivity. Where an

element was identified as having a medium or high significance and/or sensitivity, a treatment plan was identified.

A number of significant or sensitive natural features were identified within the Project Area.

The identification of significant or sensitive items resulted in changes to the mine plan where possible, additional impact assessment, or the preparation of specific treatment plans.

Significant or sensitive items considered were:

- areas of high environmental and Aboriginal archaeology and cultural heritage significance;
- wetlands, swamps and water related ecosystems;
- significant watercourses ;
- significant groundwater resources;
- threatened and protected species;
- stability of escarpments and significant cliff lines, waterfalls, pagodas or steep slopes; and
- prescribed dams.

Significant or sensitive items and natural features that were assessed as being medium to high risk, and prompted consideration of modifications to the mine plan were:

- Pagodas, cliffs, steep slopes which were identified as a public safety risk. The mine plan was designed to minimise potential for impacts to significant cliffs along the Bargo and Nepean Rivers;
- Aboriginal rock shelters which were identified as areas of high archaeological and / or Aboriginal cultural heritage significance. The mine plan was designed to minimise potential for impacts to significant rock shelters Dogtrap Creek. Previous mining at similar depth of cover has shown minimal impacts in the vicinity of Tahmoor Mine;
- Watercourses directly overlying the longwalls where potential cracking in the rock bed and/or dewatering of pools may occur;
- Significant watercourses including the Bargo River and Nepean River. The mine plan was designed to minimise impacts to Bargo River and Nepean River by ensuring it was outside the zone of predicted impact; and
- Groundwater beneath Thirlmere Lakes.

These significant natural features informed the development RMZs for further assessment.

The RMZs identified via the risk assessment process are outlined in Appendix 6.

# **APPENDIX 1**



global environmental solutions

Tahmoor South Project Subsidence Risk Workshop

Report Number 626.10080

19 August 2014

Tahmoor Coal Pty Ltd Locked Bag 2 Singleton Delivery Center SINGLETON NSW 2330

Version: Revision 0

## Tahmoor South Project

### Subsidence Risk Workshop

PREPARED BY:

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 Suite 7, 240 Waterworks Road Ashgrove QLD 4060 Australia

(PO Box 844 Ashgrove QLD 4060 Australia) T: 61 7 3858 4800 F: 61 7 3858 4801 E: brisbane@slrconsulting.com www.slrconsulting.com

> This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Tahmoor Coal Pty Ltd. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR Consulting.

SLR Consulting disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

# Table of Contents

| 1 | INTR | ODUCTION                                     | 4  |
|---|------|----------------------------------------------|----|
|   | 1.1  | Project Background                           | 4  |
|   | 1.2  | Nominated Coordinator                        | 5  |
|   | 1.3  | Scope, Aims and Methodology                  | 5  |
|   | 1.4  | External Facilitation                        | 5  |
| 2 | WOR  | KSHOP SESSIONS                               | 5  |
|   | 2.1  | Definition of Terms                          | 5  |
|   | 2.2  | The Working Group                            | 6  |
|   | 2.3  | Risk Workshop Process                        | 9  |
| 3 | STAG | SE 1 RISK WORKSHOP                           | 9  |
| 4 | WOR  | KS COMPLETED BETWEEN MARCH AND DECEMBER 2013 | 12 |
| 5 | STAG | SE 2 RISK WORKSHOP                           | 12 |
| 6 | WAY  | FORWARD                                      | 16 |
|   |      |                                              |    |

#### TABLES

| Table 1 | Significance and Sensitivity          | 5  |
|---------|---------------------------------------|----|
| Table 2 | Subsidence Risk Workshop Team Members | 7  |
| Table 3 | Action Plan from Stage 1              | 10 |
| Table 4 | Stage 2 Outcomes                      | 13 |
|         |                                       |    |

#### FIGURES

| Figure 1 | Significance and Sensitivity Distribution for Stage 1 | 9  |
|----------|-------------------------------------------------------|----|
| Figure 2 | Significance and Sensitivity Distribution for Stage 2 | 12 |

#### 1 INTRODUCTION

SLR Consulting Australia Pty Ltd (SLR) was engaged by Tahmoor Coal Pty Ltd (Tahmoor Coal) to facilitate a subsidence risk management zones workshop in March 2013. Tahmoor Coal is seeking approval for the Tahmoor South Project, being the extension of underground coal mining at Tahmoor Mine, to the south and east of the existing Tahmoor Mine surface facilities area. The subsidence risk workshop was undertaken to assist with the preparation of specialist studies to support the Environmental Impact Statement currently being prepared for the Tahmoor South Project.

The proposed development seeks to extend the life of underground mining at Tahmoor Mine until approximately 2040. The proposal will enable mining to be undertaken within the southern portion of Tahmoor Coal's existing lease areas and for operations and employment of the current workforce to continue for approximately a further 18 years.

The Stage 1 Workshop ran over three days and experts from a range of disciples attended. The first two days were comprised of site inspections to view areas of potential natural significance that maybe subject to subsidence impacts, including areas of archaeological significance, habitat for threatened fauna and also creeks. In addition, areas previously subsided by the Tahmoor Mine workings were inspected.

The third day of the workshop included presentations by each of the technical disciplines and a half day subsidence risk workshop facilitated by SLR. During the Stage 1 Risk Workshop a number of areas were identified where further information was required to adequately determine the significance and sensitivity of the features to be impacted by subsidence. Between March and December 2013 further investigations were undertaken and the Stage 2 Risk Workshop was undertaken on 12 December 2013 to revisit the risk register developed in March 2013.

#### 1.1 **Project Background**

On 6 December 2006, the NSW Government established an independent enquire to asses impacts of underground mining due to concerns relating to the post and potential future impacts of subsidence on significant natural features in the Southern Coal Fields. The outcomes of the independent enquiry are presented on *Impacts of Underground Coal Mining on Natural Features in the Southern Coal Fields, Strategic Review* (July 2008).

The enquiry focused on defined significant natural features, including rivers and significant streams, swamps and cliff lines. In addition, certain local non-natural values were also considered, including Aboriginal, non-aboriginal, conservation, scenic and recreational values.

An outcome of the enquiry was that Risk Management Zones (RMZ) should be identified to focus assessment and management of potential subsidence related impacts on significant natural features. In particular, management of non-conventional subsidence effects, such as valley closure and upsubsidence.

It was concluded in the enquiry that RMZ should be identified for all significant environmental features sensitive to valley closure and subsidence, including rivers, significant streams, significant cliff lines and valley infill swamps. RMZ are to be defined by the outside extremity of the natural feature, being whichever is greater either 40 degrees angle from the vertical down of the coal seam or 400 m lateral distance from the feature at the surface. It is noted that RMZ's apply to all streams of a 3<sup>rd</sup> order or above.

To assist with the identification of the RMZ a qualitative risk workshop was undertaken. The risk workshop considered the sensitivity or the importance the community places on the features, and the environmental consequence of the impacts.

The RMZs are not intended to represent either a determination of significance or to suggest or require the exclusion of mining. The intent of the RMZs is to highlight areas where proposed mining requires careful assessment and management.

#### 1.2 Nominated Coordinator

The nominated coordinator for the risk workshop was Ron Bush, the Approvals Manager for the Tahmoor South Project.

#### 1.3 Scope, Aims and Methodology

The scope of the risk workshop was to identify significant natural features and development of associated RMZs. For each natural feature the potential consequences and causes were considered and significance and sensitivity assigned.

In accordance with the *Impacts of Underground Coal Mining on Natural Features in the Southern Coal Fields, Strategic Review* (July 2008) the risk workshop was limited to consideration of the natural features, including rivers, streams, swamps, cliff lines, Aboriginal heritage, conservation, scenic and recreational values.

During the risk workshop a traffic light approach was adopted and each element was ranked as either having a low, medium of high significance and sensitivity. Where an element was identified as having a medium or high significance and/or sensitivity, a treatment plan was identified.

#### 1.4 External Facilitation

SLR was engaged by Tahmoor Coal to facilitate the subsidence risk workshop for the Tahmoor South Project. The first stage of the workshop was facilitated by Dean Fletcher (Principal Consultant) on 8 March 2013. The risk register was revisited on 12 December 2013 during the second stage of works and the register was updated based on further works undertaken between March and December 2013.

Dean has formal risk management training through Queensland University of Technology, and a proven track record of regulatory compliance. A copy of Dean's CV is provided as **Appendix A**.

#### 2 WORKSHOP SESSIONS

#### 2.1 Definition of Terms

The assessment of significance is subjective, as there is no guidance provided regarding this. In undertaking this risk workshop the following approach has been adopted.

#### Table 1 Significance and Sensitivity

| Significance and Sensitivity                       | Subsidence Management and Controls                                   |
|----------------------------------------------------|----------------------------------------------------------------------|
| Not highly significant and/or not highly sensitive | Standard subsidence management                                       |
| Highly significant and highly sensitive            | Mining impacts maybe deemed unacceptable<br>close to natural feature |

In addition, the following terms were adopted throughout this risk workshop:

*Risk Workshop* is the formalised means by which the aspect of the project and their associated impacts are systematically identified, assessed, ranked according to perceived risks and addressed by means of appropriate and effective controls or management outcomes.

*Risk* is the chance of something happening that will have either a positive or negative impact upon the project. It involves consideration of the sources of the risk, assessing the consequences and considering the likelihood that an event that might occur which could give rise to a consequence.

#### 2.2 The Working Group

Key stakeholders were invited to make up the working group and attend the workshop sessions held on 8 March 2013 and 12 December 2013. The involvement of key stakeholders ensures that the risks and associated significance and sensitivity identified through the process are ranked by experienced technical specialists, who understand the project, and who also have the authority to action key findings and outcomes that result from the review workshop. The workshop attendees are listed in **Table 1**.

Tahmoor Coal Pty Ltd Tahmoor South Project Subsidence Risk Workshop

# Table 2 Subsidence Risk Workshop Team Members

| 12 December<br>2013<br>Workshop | Yes                | No             | No                         | Yes                        | Yes                               | No                             | No                         | Yes                            | Yes                             | No                           | Yes                                       | No                                    |
|---------------------------------|--------------------|----------------|----------------------------|----------------------------|-----------------------------------|--------------------------------|----------------------------|--------------------------------|---------------------------------|------------------------------|-------------------------------------------|---------------------------------------|
| 8 March<br>2013<br>Workshop     | Yes                | Yes            | Yes                        | Yes                        | Yes                               | Yes                            | Yes                        | Yes                            | Yes                             | Yes                          | Yes                                       | Yes                                   |
| Years in<br>Industry            | 40                 | 12             | 26                         | 30                         | 8                                 | 30                             | 71                         | L                              | 88                              | 52                           | 9                                         | 28                                    |
| Related Experience              | Groundwater        | EIS/Planning   | Surface Water              | Surface Water              | EIS/Catchment<br>Management/Water | Geomorphology,<br>hydrogeology | Approvals, EIS<br>Planning | EIS/Consultation/Com<br>munity | Similar projects                | Mining<br>Technical/Planning | Project<br>Management/Project<br>Controls | Hydrogeology,<br>chemistry, hydrology |
| Qualifications                  | PhD                | Env. Sc/URTPL  | BE/M Eng Sc                | BE/M Eng Sc                | B Sc(Env)(Hon1)                   | BSc(Hons), PhD                 | Env Sci/URTPL              | B. Com                         | BE PhD                          | Mining Engineer              | BE Civil MBA                              | BSc MAPP Sc CP<br>Eng                 |
| Position                        | Hydrogeologist     | EIS PM         | Water Resource<br>Engineer | Water Resource<br>Engineer | EIS Author                        | Geomorphologist                | Approvals<br>Coordinator   | Community<br>Coordinator       | Senior Geotechnical<br>Engineer | Mining Engineer              | Project Manager                           | Principal Geoscientist                |
| Organisation                    | Heritage Computing | AECOM          | Gilbert & Associates       | Gilbert & Associates       | AECOM                             | Fluvial Systems                | Glencore                   | Glencore                       | SCT                             | Glencore                     | Glencore                                  | Geoterra                              |
| Name                            | Noel Merrick       | Kelly Pearsall | Tony Marszalek             | Lindsay Gilbert            | Elizabeth Thornton                | Chris Gippel                   | Chris Hammersley           | Sam Beresford                  | Ken Mills                       | Raymond Howard               | Ben Streckeisen                           | Andrew Dawkins                        |

Tahmoor Coal Pty Ltd Tahmoor South Project Subsidence Risk Workshop

Report Number 626.10080 Revision 0 19 August 2014 Page 8

| Name              | Organisation   | Position                       | Qualifications                                             | Related Experience                                  | Years in<br>Industry | 8 March<br>2013<br>Workshop | 12 December<br>2013<br>Workshop |
|-------------------|----------------|--------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------|-----------------------------|---------------------------------|
| Ron Bush          | Glencore       | Approvals Manager              | BSc MPlan PGC Eng                                          | Geology,<br>Environmental<br>Planning               | 24                   | Yes                         | Yes                             |
| Rob Oliver        | Glencore       | Tech Services<br>Manager       | MSc Eng Geol/Grad<br>Dip Mine Engineering                  | Mine Planning, Mine<br>Engineering                  | 10                   | хөү                         | Yes                             |
| Amy Louis         | AECOM          | EIS Tech Specialist<br>Manager | B Env Sc                                                   | Environmental<br>Planning and Impact<br>Assessment  | 6                    | Yes                         | No                              |
| Daryl Kay         | MSEC           | Subsidence Engineer            | BE Civil/LLB                                               | Subsidence                                          | 14                   | Хes                         | Yes                             |
| Jamie Reeves      | Niche          | Archaeologist                  | BA (Hon)                                                   | Heritage Assessment                                 | 15                   | Yes                         | No                              |
| Renee Regal       | Niche          | Archaeologist                  | BA (Hon)                                                   | Heritage Assessment                                 | 7                    | Yes                         | Yes                             |
| Matt Russell      | Niche          | Aquatic Ecologist              | B Sc                                                       | Aquatic Ecology                                     | 12                   | хөх                         | No                              |
| Luke Baker        | Niche          | Botanist                       | B Sc                                                       | Terrestrial Ecology                                 | 7                    | Хes                         | No                              |
| Matt Richardson   | Niche          | Ecologist                      | B Sc (Hons)                                                | Ecology                                             | 15                   | ٥N                          | Yes                             |
| Alexandra Frolich | AECOM          | Environmental<br>Scientist     | B Sc (Marine<br>Science)                                   | Environmental Impact<br>Assessment and<br>Approvals | 5                    | oN                          | Yes                             |
| Claire Vahtra     | AECOM          | Environmental<br>Scientist     | B Sc (Physical<br>Geography, Biological<br>Science) (Hons) | Environmental Impact<br>Assessment and<br>Approvals | 3                    | oN                          | Yes                             |
| Dean Fletcher     | SLR Consulting | Workshop Facilitator           | B Sc Env Chem                                              | Mine Closure,<br>Workshop Facilitation              | 8                    | səY                         | Yes                             |
| Joni Woollard     | SLR Consulting | Workshop Facilitator           | B Env Sc (Hon)                                             | Mine Closure,<br>Contaminated Land                  | 8                    | хөү                         | Yes                             |

#### 2.3 Risk Workshop Process

During the risk workshop the working group was commissioned with:

- · Identifying key elements and associated risk descriptions and consequences;
- Identifying the cause;
- Achieving group consensus on the significance and sensitivity for each potential risk;
- · Identifying appropriate treatment plans; and
- Assigning a treatment owner (for Stage 1 only).

#### 3 STAGE 1 RISK WORKSHOP

The Stage 1 Risk Register is provided in **Appendix B**. During the Stage 1 Risk Workshop undertaken on 8 March 2013 twenty elements were assessed. A summary of the significance and sensitivity distribution is shown in **Figure 1**. It is noted that for four elements only sensitivity was ranked, as further consideration of significance for waterways was required. In addition, three elements were not ranked due to insufficient information.



#### Figure 1 Significance and Sensitivity Distribution for Stage 1

\*Sensitivity ranked, further consideration of significance required.

Based on the outcomes of the significance and sensitivity analysis treatment plans and/or actions were identified. A summary of the treatment plans and/or actions is outlined below in **Table 3**.

Tahmoor Coal Pty Ltd Tahmoor South Project Subsidence Risk Workshop

# Table 3 Action Plan from Stage 1

| Key Element                                                                                                                            | Risk Description                                | Consequence                                                                                                                                                                   | Cause                                                                                                                                                           | Treatment plans/tasks<br>(description)                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ol> <li>Significant water courses<br/>including surface flows,<br/>water quantity and quality<br/>and ecological integrity</li> </ol> | Potential damage to<br>hydraulic control points | Sub surface flow diversion                                                                                                                                                    | Subsidence related effects<br>causes:<br>Reduction of connectivity<br>Reduction of habitat (ponds)<br>Reduction of pool depth<br>longevity<br>Rock bed cracking | Define significance of water<br>ways.<br>Determine significance and<br>sensitivity of each water<br>course. |
| 6. Significant groundwater<br>resources including<br>groundwater levels and<br>quality                                                 | Reduction in base flow in water courses         | Reduction in species<br>diversity and abundance<br>Reduced water quality<br>Reduction of connectivity<br>Reduction of habitat (ponds)<br>Reduction of pool depth<br>longevity | Aquifer dewatering                                                                                                                                              | Define significance of water<br>ways.<br>Determine significance and<br>sensitivity of each water<br>course. |

#### 4 WORKS COMPLETED BETWEEN MARCH AND DECEMBER 2013

Between the Stage 1 Risk Workshop held in March 2013 and the Stage 2 Risk Workshop held in December 2013, further assessments were undertaken to address the treatments identified in Stage 1 workshop. Additional assessment was also undertaken during this period to facilitate the establishment of baseline conditions. The outcomes of further assessments undertake during this period were considered during the Stage 2 risk workshop.

#### 5 STAGE 2 RISK WORKSHOP

The Stage 2 Risk Workshop is provided in **Appendix C**. During the Stage 2 Risk Workshop, the risk worksheet developed during Stage 1 was revisited based on the outcomes of the further assessments outlined above. In addition, elements were added where relevant.

A summary of the significance and sensitivity distribution for Stage 2 is shown in **Figure 2**.



Figure 2 Significance and Sensitivity Distribution for Stage 2

In total 18 of the 25 elements assigned rankings, had low significance and low sensitivity. Two elements had a low and a medium ranking, three had both medium significance and sensitivity, and one element had high significance and high sensitivity.

Where the significance and/or the sensitivity were ranked as medium an appropriate treatment plan and/or task was identified. The treatments plan and/or tasks are summarised in **Table 4**.

Tahmoor Coal Pty Ltd Tahmoor South Project Subsidence Risk Workshop

# Table 4 Stage 2 Outcomes

| Treatment plans/tasks<br>(description) | Before and after<br>longwall monitoring of<br>significant features and<br>assess on a longwall by<br>longwall basis                                                                                     | Stygofauna monitoring<br>program to be included<br>within the Tahmoor<br>South monitoring plan                                                                       | Ecological monitoring<br>program will include<br>riparian ecosystem                                                                                                                              |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Why?                                   | Mine plan designed to<br>reduce potential for<br>impacts to the high<br>significance features<br>Historical mining at this<br>depth of cover has shown<br>minimal impacts in the<br>vicinity of Tahmoor | Stygofauna identified in<br>one of the 13 bores<br>sampled<br>Located in shallow aquifer<br>which indicates that it may<br>only be temporarily<br>impacted by mining | Minor based on historical<br>experience at this depth<br>of cover<br>Availability of water for<br>riparian zones is unlikely<br>to change - not drawing<br>water directly from<br>standing pools |  |  |
| Sensitivity                            | Medium                                                                                                                                                                                                  | Low                                                                                                                                                                  | Low                                                                                                                                                                                              |  |  |
| Significance                           | Medium                                                                                                                                                                                                  | Medium                                                                                                                                                               | Low                                                                                                                                                                                              |  |  |
| Cause                                  | Subsidence<br>compromises<br>overhangs/rock<br>shelters with<br>Aboriginal<br>artefacts                                                                                                                 | Changed<br>groundwater<br>conditions                                                                                                                                 | Subsidence<br>causes:<br>Reduced water<br>quality<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of pool<br>depth longevity                                     |  |  |
| Consequence                            | Change in the art<br>or the context of -<br>cracks opening,<br>change in<br>hydrology,<br>shearing/cracking<br>of solid rock, rock<br>falls                                                             | Potential change<br>in habitat and loss<br>of Stygofauna                                                                                                             | Reduction in<br>species diversity<br>and abundance<br>Reduced water<br>quality<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of pool<br>depth longevity        |  |  |
| Risk Description                       | Potential<br>damage to<br>Aboriginal<br>Heritage -<br>Overhangs/rock<br>shelters and art                                                                                                                | Stygofauna<br>impacts                                                                                                                                                | Potential<br>damage to<br>ponds and other<br>sensitive<br>ecosystems<br>(riparian<br>vegetation)                                                                                                 |  |  |
| Key Element                            | 2. Areas of<br>high<br>environmental,<br>heritage or<br>archaeological<br>significance                                                                                                                  | 3. Wetlands,<br>swamps and<br>water related<br>ecosystems                                                                                                            | <ol> <li>Wetlands,<br/>swamps and<br/>water related<br/>ecosystems</li> </ol>                                                                                                                    |  |  |

| 19 August 2<br>Pag | Cause Significance Sensitivity Why? Treatment plans/tasks (description) | Subsidence<br>causes:<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of<br>habitat (ponds)<br>Reduction of<br>habitat (ponds)<br>Reduction of<br>habitat (ponds)<br>Reduction of<br>habitat (ponds)<br>Reduction of pools, directly above long<br>walls<br>Potential loss of habitat<br>for frogs previously<br>identified impacts in the<br>vicinity of Tahmoor | Subsidence<br>related effects<br>causes:<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction (ponds)<br>Reduction (ponds)<br>Reduct | Vertical<br>Vertical<br>Vertical<br>Connectivity<br>Far field<br>depressurisation<br>Medium<br>Medium<br>Medium<br>Medium<br>Medium<br>No proven impacts from<br>No proven impacts from<br>Lakes Monitoring Plan<br>the current Tahmoor<br>operations at<br>approximately 600 m from |
|--------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                         | Poten<br>beds {<br>pools,<br>walls<br>for fro,<br>identif<br>vicinity                                                                                                                                                                                                                                                                                                                             | Knick<br>and p<br>These<br>(or les<br>Impac<br>to be (<br>curren<br>Tahm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mining<br>is app<br>from 1<br>for imi<br>No pro<br>the cu<br>operat<br>approv                                                                                                                                                                                                        |
|                    | Sensitivity                                                             | Medium                                                                                                                                                                                                                                                                                                                                                                                            | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Medium                                                                                                                                                                                                                                                                               |
|                    | Significance                                                            | Medium                                                                                                                                                                                                                                                                                                                                                                                            | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Medium                                                                                                                                                                                                                                                                               |
|                    | Cause                                                                   | Subsidence<br>causes:<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of pool<br>depth longevity                                                                                                                                                                                                                                                                  | Subsidence<br>related effects<br>causes:<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of pool<br>depth longevity<br>Rock bed<br>cracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vertical<br>connectivity<br>Far field<br>depressurisation                                                                                                                                                                                                                            |
|                    | Consequence                                                             | Reduction in<br>species diversity<br>and abundance<br>Reduced water<br>quality<br>Reduction of<br>connectivity<br>Reduction of<br>habitat (ponds)<br>Reduction of pool<br>depth longevity                                                                                                                                                                                                         | Reduction in flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loss of water<br>from the<br>Thirlmere Lakes                                                                                                                                                                                                                                         |
| kshop              | Risk Description                                                        | Potential<br>damage to rock<br>beds in water<br>courses                                                                                                                                                                                                                                                                                                                                           | Potential<br>impacts on third<br>order streams,<br>including Dog<br>Trap Creek, Tea<br>Tree Hollow,<br>Eliza Creek,<br>Carters Creek,<br>and Cow Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Possible<br>reduction in<br>groundwater<br>pressure -<br>effecting<br>Thirlmere Lakes                                                                                                                                                                                                |
| ubsidence Risk Wor | Key Element                                                             | <ol> <li>Significant<br/>water courses<br/>including<br/>surface flows,<br/>water quantity<br/>and quality and<br/>ecological<br/>integrity</li> </ol>                                                                                                                                                                                                                                            | 5. Significant<br>water courses<br>including<br>surface flows,<br>water quantity<br>and quality and<br>ecological<br>integrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6. Significant<br>groundwater<br>resources<br>including<br>groundwater<br>levels and<br>quality                                                                                                                                                                                      |

| ahmoor Coal Pty Ltd | ahmoor South Project | ubsidence Risk Workshop |
|---------------------|----------------------|-------------------------|
| Tahmoor C           | Tahmoor Si           | Subsidence              |

| Treatment plans/tasks<br>(description) | On-going resupply of<br>water where required                                                                                                                                                                                      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Why?                                   | Indicative information<br>from MSB shows bore<br>replacement of one every<br>six years in the Southern<br>Coal Fields<br>MSB are responsible for<br>redrilling bores if sheared<br>Resupply water in the<br>event of reduced flow |
| Sensitivity                            | Medium                                                                                                                                                                                                                            |
| Significance                           | Low                                                                                                                                                                                                                               |
| Cause                                  | Aquifer<br>dewatering<br>Fracturing/<br>shearing<br>Depressurisation                                                                                                                                                              |
| Consequence                            | Reduced and/or<br>loss of access to<br>groundwater                                                                                                                                                                                |
| <b>Risk Description</b>                | Subsidence<br>impact on<br>private<br>extraction bores                                                                                                                                                                            |
| Key Element                            | <ol> <li>Significant<br/>groundwater<br/>resources<br/>including<br/>groundwater<br/>levels and<br/>quality</li> </ol>                                                                                                            |

#### 6 WAY FORWARD

Management strategies for the potential risks shown in **Table 4** will be outlined in the EIS and following approval the relevant control measures will be included in appropriate plans and/or strategies.

#### APPENDIX A DEAN FLETCHER CV

#### **DEAN FLETCHER**

Mackay Office Manager



#### **QUALIFICATIONS**

Master Public Policy (Current)

BSc Environmental Analytical Chemistry,

#### BACKGROUND

Dean has been heavily involved in a range of domestic and international facility closure and rehabilitation planning projects as part of the environmental assessment (EA) process. He has formal risk management training through Queensland University of Technology holding a G2 (Certificate 4) qualification in risk assessment facilitation, and has a proven track record of regulatory compliance. With previous experience working on concept studies for new business opportunities incorporating technical feasibility, capital and operating expenditure and carbon footprint analysis, he also provides support to the GSSE special projects team.

Dean spent over 4 years working for BHP Billiton's Global Technology Group engaging stakeholders, motivating people and delivering technically challenging projects. Projects include decommissioning and re-commissioning site facilities, auditing and compliance, plant optimisation/sustainability and environmental chemistry. Dean has experience with ISO14001 compliance requirements and was involved in a comprehensive best practice audit of specific components of BHP Billiton's Chilean operations.

#### SPECIAL EXPERTISE

Risk and incident management; Rehabilitation and closure planning; Environmental approvals and regulatory compliance; Project and information management; Operational improvement and sustainability; Waste treatment and disposal; Dangerous Goods and Hazardous Substances management and training; Concept studies; technical feasibility, capital/operating expenditure and carbon footprint analysis; Inspections, auditing and reporting; Sampling, monitoring and reporting.

#### SELECTED PROJECT EXPERIENCE

#### **Risk and Incident Management**

- Xstrata Coal NSW Life of Mine Risk assessments
- Mt Owen Optimisation project feasibility risks and opportunities workshop
- United Colliery expansion project prefeasibility risks and opportunities workshop
- West Wallsend Colliery Geological Risks/Opportunities
   Workshop, Xstrata Coal
- Infrastructure corridor, concentrate pipeline, power line and roads, Tampakan, Philippines
- Xstrata Coal Chain Logistics Risks/Opportunities Workshop, Xstrata Coal
- Potential interruptions to the execution of life of mine plans, Xstrata Coal NSW (11 coal mines)
- 5 yearly comprehensive health and safety risk assessment, West Wallsend Colliery
- Engineering and construction of a storage facility for radioactive substances (DG Class 7.1)

#### **Rehabilitation and Closure Planning**

- Undertaking a full review of Mine Closure and Rehabilitation liability costs for all Xstrata Coal NSW sites for audit and accounting purposes
- Preparation of a Decommissioning and Rehabilitation Plan, Abbott Point Coal Terminal expansion project
- Preparation of a Decommissioning Plan final land-form chapter for Rio Tinto's Blair Athol Coal Mine,
- Co-ordination of the cost model development for detailed closure planning of Rio Tinto's Blair Athol Coal Mine
- Preparation of a Decommissioning and Rehabilitation Assessment for the Arrow Energy Bowen Coal Seam Gas (CSG) project

#### **Environmental Approvals and Regulatory Compliance**

- Preparation of a Rehabilitation Management Plan for the Adani Abbott Point Coal Terminal
- A Subsidence Management Plan for Ulan Coal Mine
- Preparation of a combined underground and open cut Mining Operations Plan (MOP) for Ulan Coal Mine
- Preparation of a construction environmental management plan, quality assurance plan, farm operations plan and handback plan
- Preparation of an operational waste management plan for the Moolarben Coal Project.

#### **Operational Improvement and Sustainability**

- Chemical analysis including method development, QA and QC, BHP Billiton
- Process optimisation and sustainability, BHP Billiton
- Materials handling (Mineral sands; Copper cathode; Solid liquid separation), BHP Billiton

#### Waste Treatment and Disposal

- Identifying and develop opportunities for recovering valuable commodities such as water, acid and saleable products, BHP Billiton
- Iron and heavy metal removal, BHP Billiton
- Disposal of a variety of acidic and basic process solids and solutions – engaging third party providers, BHP Billiton

# Dangerous Goods and Hazardous Substances Management and Training

- Established a registry and control system for managing ionising radiation sources; ensuring compliance with NSW DECCW legislation, BHP Billiton
- Developed and implemented a competency based training package for DG Class 8 substances, BHP Billton

#### Inspections, Auditing and Reporting

• Key contributor in a business improvement initiative for the BHP Billiton Base Metals group and a number of Workcover, ISO14001 and internal audits.

#### Sampling, Monitoring and Reporting

- Designing, installing and maintaining monitoring systems, BHP Billiton
- Collecting and analysing samples, and adjusting operating conditions as required, BHP Billiton

**APPENDIX B STAGE 1 RISK REGISTER** 

|            | Task<br>Owner                          |                                                                                                          | ц                                                                                                                                     | RB                                                                            | CG, TM,<br>MR2                                                                                                                                                                         |                                                                                                                      |
|------------|----------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|            | Treatment plans/tasks<br>(description) | Nil                                                                                                      | Develop a log of each<br>individual art site and<br>assign a significance<br>and sensitivity value.                                   | To be included in<br>Niche Scope of Works                                     | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                            | Nii                                                                                                                  |
|            | Treatment Name                         | Nil                                                                                                      | Develop a log of each<br>individual art site and<br>assign a significance<br>and sensitivity.                                         | To be included in<br>Niche Scope of Works                                     | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                            | ΪŻ                                                                                                                   |
|            | Sensitivity                            | Low                                                                                                      | High                                                                                                                                  |                                                                               |                                                                                                                                                                                        | Mo                                                                                                                   |
|            | Significance                           | Low                                                                                                      | High                                                                                                                                  |                                                                               |                                                                                                                                                                                        | low                                                                                                                  |
| Subsidence | Cause                                  | Subsidence                                                                                               | Subsidence<br>compromises<br>overhangs/rock<br>shelters with Aboriginal<br>artefacts                                                  | Changed groundwater<br>conditions                                             | Subsidence causes:<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity                                 | Changes in surface<br>topography and<br>drainage                                                                     |
| I          | Consequence                            | Disturbance of<br>artefacts                                                                              | Change in the art or<br>the context of - cracks<br>opening, change in<br>hydrology,<br>sheering/cracking of<br>solid rock, rock falls | Potential change in<br>habitat                                                | Reduction in species<br>diversity and<br>abundance<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Increased flood<br>impacts                                                                                           |
| iental     | Risk Description                       | Potential damage to<br>Aboriginal Heritage<br>items - Stone artefacts                                    | Potential damage to<br>Aboriginal Heritage<br>artefacts -<br>Overhangs/rock<br>shelters and art                                       | Stygofauna impacts                                                            | Potential damage to<br>ponds and other<br>sensitive ecosystems                                                                                                                         | Subsidence effects on<br>town drainage                                                                               |
| Environm   | Sub Key<br>Element (if<br>applicable)  | 1                                                                                                        | 7                                                                                                                                     | m                                                                             | 4                                                                                                                                                                                      | Ω                                                                                                                    |
| Tahmoor    | Key Element                            | <ol> <li>Areas of high<br/>environmental,<br/>heritage or<br/>archaeological<br/>significance</li> </ol> | <ol> <li>Areas of high<br/>environmental,<br/>heritage or<br/>archaeological<br/>significance</li> </ol>                              | <ol> <li>Wetlands,<br/>swamps and water<br/>related<br/>ecosystems</li> </ol> | 3. Wetlands,<br>swamps and water<br>related<br>ecosystems                                                                                                                              | <ol> <li>Catchment<br/>areas causing or<br/>exacerbating<br/>erosion and<br/>drainage pattern<br/>changes</li> </ol> |

| CG, TM,<br>MR2                                                                                                                                                                         | CG, TM,<br>MR2                                                                                                                                                         | CG, TM,<br>MR2                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                            | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                            | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                                |                                                                                                                                                |                                                                                                                                              |
| Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                            | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                            | Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                                                |                                                                                                                                                |                                                                                                                                              |
| High                                                                                                                                                                                   | low                                                                                                                                                                    | High                                                                                                                                                                                       | No                                                                                                                                             | Low                                                                                                                                          |
|                                                                                                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                            | Low                                                                                                                                            | High                                                                                                                                         |
| Subsidence causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity                                                          | Subsidence causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity                                          | Subsidence related<br>effects causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>Reduction of pool<br>depth longevity<br>Rock bed cracking | Reduction of water<br>supply to the<br>Pheasants Nest Weir<br>Reduced water quality                                                            | Vertical connectivity<br>Far field<br>depressurisation                                                                                       |
| Reduction in species<br>diversity and<br>abundance<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Reduction in species<br>diversity and<br>abundance<br>Reduced water quality<br>Reduction of<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Sub surface flow<br>diversion                                                                                                                                                              | Potentially not meeting<br>SCA requirements<br>(Neutral or Beneficial<br>Effects)                                                              | Loss of water from the<br>Thirimere Lakes                                                                                                    |
| Potential damage to<br>rock beds in water<br>courses                                                                                                                                   | Potential damage to<br>knick points in water<br>courses                                                                                                                | Potential damage to<br>hydraulic control points                                                                                                                                            | Potential reduction in<br>water supply (Sydney<br>Catchment Authority)                                                                         | Possible reduction GW<br>pressure - effecting<br>Thirimere Lakes                                                                             |
| ω                                                                                                                                                                                      | ٦                                                                                                                                                                      | œ                                                                                                                                                                                          | თ                                                                                                                                              | 10                                                                                                                                           |
| <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                                         | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                         | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                                             | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol> | <ol> <li>Significant</li> <li>groundwater</li> <li>resources</li> <li>including</li> <li>groundwater levels</li> <li>and cutality</li> </ol> |

| CG, TM,<br>MR2                                                                                                                                                |                                                                                              |                                                                                              |                                                                                                          |                                                                                                          |                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                   |                                                                                              |                                                                                              |                                                                                                          |                                                                                                          |                                                                                                          |
| Define significance of<br>water ways.<br>Determine significance<br>and sensitivity of each<br>water course.                                                   |                                                                                              |                                                                                              |                                                                                                          |                                                                                                          |                                                                                                          |
| Low                                                                                                                                                           | Low                                                                                          | High                                                                                         | Mol                                                                                                      | High                                                                                                     | low                                                                                                      |
|                                                                                                                                                               | Low                                                                                          | Low                                                                                          | Low                                                                                                      | Medium                                                                                                   | Low                                                                                                      |
| Aquifer dewatering                                                                                                                                            | Depressurisation                                                                             | Aquifer dewatering<br>Fracturing/sheering<br>Depressurisation                                | Subsidence causing<br>release of gas into<br>waterways<br>Changes in hydrology                           | Subsidence causing<br>pool draining<br>Changes in water<br>quality                                       | Collapsing of<br>overhangs<br>Damage to<br>infrastructure                                                |
| Reduction in species<br>diversity and<br>abundance<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Regional reduction in<br>GW level                                                            | Reduced access and quality to GW                                                             | Vegetation die back                                                                                      | Loss of habitat<br>Loss of local<br>populations                                                          | Loss of habitat from<br>collapse of overhangs<br>and infrastructure<br>containing crevices               |
| Reduction in base flow<br>in water courses                                                                                                                    | Deep aquifer                                                                                 | Subsidence impact on<br>private extraction<br>bores                                          | Impact to EEC<br>communities and/or<br>endangered vegetation<br>species                                  | Subsidence impact to<br>fauna - Frogs/toadlets                                                           | Subsidence impact to<br>fauna - Bats                                                                     |
| 11                                                                                                                                                            | 12                                                                                           | 13                                                                                           | 14                                                                                                       | 15                                                                                                       | 16                                                                                                       |
| 6. Significant<br>groundwater<br>resources<br>including<br>groundwater levels<br>and quality                                                                  | 6. Significant<br>groundwater<br>resources<br>including<br>groundwater levels<br>and quality | 6. Significant<br>groundwater<br>resources<br>including<br>groundwater levels<br>and quality | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 |

| Low                                                                                                      |                                                                                                          | High                                                                                                                     | Low                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Low                                                                                                      |                                                                                                          | Medium                                                                                                                   | Low                                                                                                                                        |
| Cracking of surface<br>rock                                                                              |                                                                                                          | Subsidence                                                                                                               | Far field<br>depressurisation<br>Vertical connectivity                                                                                     |
| Loss of habitat                                                                                          | Consider at a later<br>date                                                                              | Rock falls<br>Collapse of overhangs<br>Reduction in visual<br>amenity<br>Reduced public access<br>due to safety concerns | Potential increase of<br>leakage/reduction in<br>dam yield                                                                                 |
| Subsidence impact to<br>fauna - Broad head<br>snake                                                      | Subsidence impact to<br>fauna - Macquarie<br>Perch                                                       | Subsidence impacts to<br>other cliffs (over 5 m<br>high and 63 degrees)                                                  | Potential far field<br>impacts on Nepean<br>Dam                                                                                            |
| 17                                                                                                       | 18                                                                                                       | 19                                                                                                                       | 20                                                                                                                                         |
| 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1999 | 8. The stability of<br>escarpments and<br>significant cliff<br>lines, pagodas or<br>steep slopes                         | 14. Prescribed<br>dams (including<br>stored waters and<br>reservoirs) and/or<br>structures referred<br>to by the (Dams<br>Safety Act 1978) |

#### **APPENDIX C STAGE 2 RISK REGISTER**

| Tahmoor                                                                                                                                                          | Enviror                               | mental                                                                                  | I                                                                                                                                                                                      | Subsidence                                                                                                                                             |              |             |                                                                                                                                                                                             |                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Key Element                                                                                                                                                      | Sub Key<br>Element (if<br>applicable) | Risk Description                                                                        | Consequence                                                                                                                                                                            | Cause                                                                                                                                                  | Significance | Sensitivity | Why?                                                                                                                                                                                        | Treatment plans/tasks<br>(description)                                                                              |
| 1. Public safety                                                                                                                                                 | -                                     | Surface cracking<br>(minor based on<br>historical experience)                           | Additional risk due to<br>mining - Personal<br>injury<br>(vehicle/horse/motorbi<br>ke/walking                                                                                          | Subsidence<br>Surface cracking<br>Unauthorised access                                                                                                  | Low          | wo          | Minor based on historical experience at this depth of cover                                                                                                                                 |                                                                                                                     |
| 1. Public safety                                                                                                                                                 | 7                                     | Rock/tree fall<br>(pagodas, cliffs, steep<br>slopes)                                    | Additional risk due to<br>mining - Personal<br>injury/fatality<br>(vehicle/horse/motorbi<br>ke/walking)                                                                                | Subsidence<br>Pagodas and steep<br>slopes (private<br>property)<br>Unauthorised access                                                                 | Low          | Low         | Mine plan designed to avoid these features                                                                                                                                                  |                                                                                                                     |
| 2. Areas of high<br>environmental,<br>heritage or<br>archaeological<br>significance                                                                              | б                                     | Potential damage to<br>Aboriginal Heritage<br>items - Stone artefacts                   | Disturbance of<br>artefacts                                                                                                                                                            | Subsidence                                                                                                                                             | Low          | Low         | Loose fragments, depth of cover makes it difficult to<br>identify changes<br>Subsidence impacts on artefacts are negligible                                                                 | Zil                                                                                                                 |
| <ol> <li>Areas of high<br/>environmental,<br/>heritage or<br/>archaeological<br/>significance</li> </ol>                                                         | 4                                     | Potential damage to<br>Aboriginal Heritage -<br>Overhangs/rock<br>shelters and art      | Change in the art or<br>the context of - cracks<br>opening, change in<br>hydrology,<br>shearing/cracking of<br>solid rock, rock falls                                                  | Subsidence<br>compromises<br>overhangs/rock<br>shelters with Aboriginal<br>artefacts                                                                   | Medium       | Medium      | Mine plan designed to reduce potential for impacts to<br>the high significance features<br>Historical mining at this depth of cover has shown<br>minimal impacts in the vicinity of Tahmoor | Before and after<br>longwall monitoring of<br>significant features and<br>assess on a longwall<br>by longwall basis |
| <ol> <li>Wetlands,<br/>swamps and water<br/>related<br/>ecosystems</li> </ol>                                                                                    | Ŋ                                     | Stygofauna impacts                                                                      | Potential change in<br>habitat and loss of<br>Stygofauna                                                                                                                               | Changed groundwater<br>conditions                                                                                                                      | Medium       | Low         | Stygofauna identified in one of the 13 bores sampled<br>Located in shallow aquifer which indicates that it may<br>only be temporarily impacted by mining                                    | Stygofauna monitoring<br>program to be included<br>within the Tahmoor<br>South monitoring plan                      |
| 3. Wetlands,<br>swamps and water<br>related<br>ecosystems                                                                                                        | ω                                     | Potential damage to<br>ponds and other<br>sensitive ecosystems<br>(riparian vegetation) | Reduction in species<br>diversity and<br>abundance<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Subsidence causes:<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity | Mo           | Mo          | Minor based on historical experience at this depth of<br>cover<br>Availability of water for riparian zones is unlikely to<br>change - not drawing water directly from standing pools        | Ecological monitoring<br>program will include<br>riparian ecosystem                                                 |
| <ol> <li>Catchment</li> <li>Catchment</li> <li>areas causing or</li> <li>exacerbating</li> <li>erosion and</li> <li>drainage pattern</li> <li>changes</li> </ol> | 7                                     | No risk identified by<br>the working group                                              |                                                                                                                                                                                        |                                                                                                                                                        |              |             |                                                                                                                                                                                             |                                                                                                                     |
| Development of a<br>monitoring program<br>and a TARP to<br>manage potential<br>impacts on rock beds<br>in water courses                                                                     | Ē                                                                                                                                                                                                                                                                                                   | Ē                                                                                                                                                                         | Ē                                                                                                                                                                     | Ē                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential cracking in rock beds and/or dewatering of<br>pools, directly above long walls<br>Potential loss of habitat for frogs previously identified<br>impacts in the vicinity of Tahmoor | Knick points were mapped in the headwaters in both<br>cleared and uncleared land, grass cover on the low flow<br>channel was found in all small head water streams -<br>indicating likely resistant to erosion<br>Predicted changes in grade are much less than the<br>natural grade of the streams | Minor based on historical experience at this depth of<br>cover<br>Data analysis and modelling indicates no loss of flow<br>and/or water quality in Sydney Water catchment | Mine plan designed to minimise impacts<br>Minimum distance is 560 m from the edge of the nearest<br>longwall, which is outside the zone of predicted impact           | Mine plan designed to minimise impacts<br>Minimum distance is 260 m from the edge of the nearest<br>longwall                                                          |
| Medium                                                                                                                                                                                      | Low                                                                                                                                                                                                                                                                                                 | Low                                                                                                                                                                       | Low                                                                                                                                                                   | Low                                                                                                                                                                   |
| Medium                                                                                                                                                                                      | Low                                                                                                                                                                                                                                                                                                 | Low                                                                                                                                                                       | Low                                                                                                                                                                   | Low                                                                                                                                                                   |
| Subsidence causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity                                                               | Subsidence causes:<br>Reduction in water<br>quality<br>Increased potential for<br>erosion due to change<br>in grade                                                                                                                                                                                 | Reduction of water<br>supply to the<br>Pheasants Nest Weir<br>Reduced water quality                                                                                       | Subsidence related<br>effects causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity<br>Rock bed cracking | Subsidence related<br>effects causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity<br>Rock bed cracking |
| Reduction in species<br>diversity and<br>abundance<br>Reduced water quality<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>(ponds)<br>depth longevity                | Reduced water quality                                                                                                                                                                                                                                                                               | Potentially not meeting<br>SCA requirements<br>(Neutral or Beneficial<br>Effects)                                                                                         | Reduction in flow                                                                                                                                                     | Reduction in flow                                                                                                                                                     |
| Potential damage to<br>rock beds in water<br>course                                                                                                                                         | Potential damage to<br>soft knick points in<br>water courses                                                                                                                                                                                                                                        | Potential reduction in water supply (Sydney Catchment Authority)                                                                                                          | Potential impacts on<br>the Bargo River                                                                                                                               | Potential impacts on<br>the Nepean River                                                                                                                              |
| ω                                                                                                                                                                                           | σ                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                         | £                                                                                                                                                                     | 12                                                                                                                                                                    |
| <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                                              | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                                                                                                                                                      | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                            | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                        | <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                        |

| Development of a<br>monitoring program<br>and an SMP, and to be<br>addressed in the EIS                                                                                                   | Develop Thirlmere<br>Lakes Monitoring Plan                                                                                                                                                                               | Zi                                                                                                                 | On-going resupply of<br>water where required                                                                                                                                                                          | īz                                                                                                                                                                                             | īz                                                                                                                                      |                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Knick points, rock slabs and pools are assessed above<br>These are all third order (or less) streams<br>Impacts are not expected to be greater than those<br>currently managed at Tahmoor | Mining at Tahmoor South is approximately 3 km from<br>Thirlmere Lakes - minimising the potential for impacts<br>No proven impacts from the current Tahmoor operations<br>at approximately 600 m from the Thirlmere Lakes | No identified existing use of water within the deep<br>aquifer<br>Water quality is marginal                        | Indicative information from MSB shows bore<br>replacement of one every six years in the Southern Coal<br>Fields<br>MSB are responsible for redrilling bores if sheared<br>Resupply water in the event of reduced flow | Elsewhere in the Southern Coal Fields the drawdown<br>has been negligible with respect to surface water base<br>flow impacts<br>Minor based on historical experience at this depth of<br>cover | No Upland Swamps present within the Project Area.<br>EEC's recorded within the Project Area are not sensitive<br>to subsidence impacts. |                                                                                                                |
| Low                                                                                                                                                                                       | Medium                                                                                                                                                                                                                   | Low                                                                                                                | Medium                                                                                                                                                                                                                | Low                                                                                                                                                                                            | Low                                                                                                                                     |                                                                                                                |
| low                                                                                                                                                                                       | Medium                                                                                                                                                                                                                   | Low                                                                                                                | Low                                                                                                                                                                                                                   | Low                                                                                                                                                                                            | No                                                                                                                                      |                                                                                                                |
| Subsidence related<br>effects causes:<br>Reduction of<br>connectivity<br>Reduction of habitat<br>(ponds)<br>Reduction of pool<br>depth longevity<br>Rock bed cracking                     | Vertical connectivity<br>Far field<br>depressurisation                                                                                                                                                                   | Depressurisation                                                                                                   | Aquifer dewatering<br>Fracturing/shearing<br>Depressurisation                                                                                                                                                         | Aquifer dewatering and<br>drawdown of the water<br>table                                                                                                                                       | Subsidence causing<br>release of gas into<br>waterways<br>Changes in hydrology                                                          |                                                                                                                |
| Reduction in flow                                                                                                                                                                         | Loss of water from the<br>Thirlmere Lakes                                                                                                                                                                                | Regional reduction in<br>groundwater level                                                                         | Reduced and/or loss of<br>access to groundwater                                                                                                                                                                       | Reduced and/or loss of<br>surface water base<br>flow                                                                                                                                           | Vegetation die back                                                                                                                     |                                                                                                                |
| Potential impacts on<br>third order streams,<br>including Dog Trap<br>Creek, Tea Tree<br>Hollow, Eliza Creek,<br>Carters Creek, and<br>Cow Creek                                          | Possible reduction in<br>groundwater pressure -<br>effecting Thirimere<br>Lakes                                                                                                                                          | Deep aquifer - below<br>the Baldhill Claystone                                                                     | Subsidence impact on<br>private extraction<br>bores                                                                                                                                                                   | Subsidence impact on<br>groundwater impacting<br>surface water base<br>flow                                                                                                                    | Impact to threatened<br>and/or protected<br>communities and/or<br>species                                                               | Impact to Pomaderris<br>brunnea due to<br>subsidence (covered<br>above under water<br>dependent<br>ecosystems) |
| <u></u>                                                                                                                                                                                   | 14                                                                                                                                                                                                                       | 15                                                                                                                 | 16                                                                                                                                                                                                                    | 17                                                                                                                                                                                             | 8                                                                                                                                       | 6                                                                                                              |
| <ol> <li>Significant water<br/>courses including<br/>surface flows,<br/>water quantity and<br/>quality and<br/>ecological integrity</li> </ol>                                            | <ol> <li>Significant<br/>groundwater<br/>resources<br/>including<br/>groundwater levels<br/>and quality</li> </ol>                                                                                                       | <ol> <li>Significant<br/>groundwater<br/>resources<br/>including<br/>groundwater levels<br/>and quality</li> </ol> | <ol> <li>Significant<br/>groundwater<br/>resources<br/>including<br/>groundwater levels<br/>and quality</li> </ol>                                                                                                    | <ol> <li>Significant<br/>groundwater<br/>resources<br/>including<br/>groundwater levels<br/>and quality</li> </ol>                                                                             | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 and EPBC                       | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995       |

|                                                                                                                                                 | īz                                                                                                       | Ē                                                                                                        | ĪZ                                                                                                                                                                                                                           | Ē                                                                                                                                    | ĪZ                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                 | Not identified as in issue previously in the Southern Coal<br>Fields                                     | Not identified as in issue previously in the Southern Coal<br>Fields                                     | With the exception of the Nepean River, this species<br>has not been recorded in the subsidence impact area<br>and is unlikely due to rock barriers.<br>Is present in the Nepean River, however, unlikely to be<br>impacted. | Minor based on historical experience at this depth of<br>cover<br>Limited number of minor cliffs located directly above<br>longwalls | Minor based on historical experience at this depth of<br>cover<br>No major cliffs located directly above longwalls              |
|                                                                                                                                                 | Low                                                                                                      | Low                                                                                                      | Low                                                                                                                                                                                                                          | Low                                                                                                                                  | wo                                                                                                                              |
|                                                                                                                                                 | low                                                                                                      | Low                                                                                                      | Low                                                                                                                                                                                                                          | Low                                                                                                                                  | Mo                                                                                                                              |
|                                                                                                                                                 | Collapsing of<br>overhangs<br>Damage to<br>infrastructure                                                | Cracking of surface<br>rock                                                                              | Subsidence resulting is<br>loss of flow and/or<br>decreased water<br>quality                                                                                                                                                 | Subsidence                                                                                                                           | Subsidence                                                                                                                      |
|                                                                                                                                                 | Potential loss of<br>habitat from collapse<br>of overhangs and<br>infrastructure<br>containing crevices  | Potential loss of<br>habitat                                                                             | Potential loss of<br>habitat                                                                                                                                                                                                 | Rock falls<br>Collapse of overhangs<br>Reduction in visual<br>amenity<br>Reduced public access<br>due to safety concerns             | Rock falls<br>Collapse of overhangs<br>Reduction in visual<br>amenity<br>Reduced public access<br>due to safety concerns        |
| Subsidence impact to<br>fauna - Giant<br>Burrowing Frog and<br>the Littlejohn's Tree<br>frog (addressed above<br>in element 9 Loss of<br>pools) | Subsidence impact to<br>fauna - Bats                                                                     | Subsidence impact to<br>fauna - Broad-headed<br>Snake                                                    | Subsidence impact to<br>fauna - Macquarie<br>Perch                                                                                                                                                                           | Subsidence impacts to<br>minor cliffs (over 10 m<br>high, longer than 20 m<br>and 63 degrees)                                        | Subsidence impacts to<br>major cliffs (over 40 m<br>high or longer than 200<br>m and 63 degrees)<br>and in the Nepean<br>River. |
| 50                                                                                                                                              | 5                                                                                                        | 22                                                                                                       | 53                                                                                                                                                                                                                           | 24                                                                                                                                   | 25                                                                                                                              |
| 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995                                        | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1995 | 7. Threatened and<br>protected species<br>under the<br>Threatened<br>Species<br>Conservation Act<br>1999                                                                                                                     | 8. The stability of<br>escarpments and<br>significant cliff<br>lines, pagodas or<br>steep slopes                                     | 8. The stability of<br>escarpments and<br>significant cliff<br>lines, pagodas or<br>steep slopes                                |

| o                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Low                                                                                                                                       |
| Far field<br>depressurisation<br>Vertical connectivity                                                                                    |
| Potential increase of<br>leakage/reduction in<br>dam yield                                                                                |
| Potential far field<br>impacts on Nepean<br>Dam                                                                                           |
| 26                                                                                                                                        |
| 9. Prescribed<br>dams (including<br>stored waters and<br>reservoirs) and/or<br>structures referred<br>to by the (Dams<br>Safety Act 1978) |

### **APPENDIX 2**

### TAHMOOR SOUTH FEASIBILITY SUBSIDENCE WORKSHOP

### Agenda of Meeting



| Subject      | Tahmoor South Project<br>Subsidence Workshop |                                                                                 |                                                                             |
|--------------|----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Date         | 6,7 and 8 March 2013                         |                                                                                 |                                                                             |
| Venue        | Various - See Below                          |                                                                                 |                                                                             |
| Participants | Organisation                                 | Person                                                                          | Expertise                                                                   |
|              | Xstrata Tahmoor                              | Ben Streckeisen<br>Rob Oliver<br>Raymond Howard<br>Ron Bush<br>Chris Hammersley | Project Manager<br>Tech Services<br>Tech Services<br>Approvals<br>Approvals |
|              |                                              | Samperesion                                                                     | Community, Meeting Scribe                                                   |
|              | GSS Environmental                            | Andrew Hutton                                                                   | Meeting Facilitator                                                         |
|              | AECOM                                        | Kelly Pearsall<br>Amy Louis<br>Liz Thornton                                     | EIS<br>EIS<br>EIS                                                           |
|              | Niche Environmental                          | Matt Richardson<br>Jamie Reeves<br>Renee Regal                                  | Ecology<br>Archaeology<br>Archaeology                                       |
|              | Fluvial Systems                              | Dr Chris Gippel                                                                 | Geomorphology                                                               |
|              | Gilbert & Associates                         | Lindsay Gilbert<br>Tony Marszalek                                               | Surface Water<br>Surface Water                                              |
|              | MESC                                         | Daryl Kay                                                                       | Subsidence                                                                  |
|              | Heritage Computing                           | Dr Noel Merrick                                                                 | Groundwater                                                                 |
|              | Geoterra                                     | Andrew Dawkins                                                                  | Hydrogeology, Subsidence                                                    |
|              | SCT                                          | Dr Ken Mills                                                                    | Geotechnical, Subsidence                                                    |

| Wednesday 6 Mar | ch                                                                               |                 |                                    |
|-----------------|----------------------------------------------------------------------------------|-----------------|------------------------------------|
| Time            | Item                                                                             | Who             | Location                           |
| 8.00            | Arrival and Coffee                                                               | All             | Tahmoor Conference Room 4          |
| 8.30            | Safety Briefing & Overview of Site Inspections                                   | Ron Bush        | Tahmoor Conference Room 4          |
| 9.00            | Site inspections of stream types and geomorphology features within Tahmoor South | Dr Chris Gippel | Various sites – Mini Bus Transport |
| 12.30           | Break - Lunch                                                                    | All             | Tahmoor Conference Room 4          |
| 2.00            | Site inspections of stream types and geomorphology features within Tahmoor South | Dr Chris Gippel | Various sites - Mini Bus Transport |
| 4.30            | De-brief of day and close                                                        | All             | Tahmoor Conference Room 4          |

| Thursday 7 March |                                                                                 |                                   |                                    |
|------------------|---------------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| Time             | Item                                                                            | Who                               | Location                           |
| 8.00             | Arrival and Coffee                                                              | All                               | Tahmoor Conference Room 4          |
| 8.30             | Safety Briefing & Overview of Site Inspections                                  | Ron Bush                          | Tahmoor Conference Room 4          |
| 9.00             | Inspections of Tahmoor North streams and subsidence impact of current longwalls | Andrew Dawkins                    | Various sites - Mini Bus Transport |
| 12.30            | Break - Lunch                                                                   | All                               | Tahmoor Conference Room 4          |
| 2.00             | Inspections of aboriginal, heritage and ecology sites within Tahmoor South      | Matt Richardson<br>& Jamie Reeves | Various sites - Mini Bus Transport |
| 4.30             | De-brief of day and close                                                       | All                               | Tahmoor Conference Room 4          |

### TAHMOOR SOUTH FEASIBILITY SUBSIDENCE WORKSHOP

### Agenda of Meeting



| Friday 8 Marc | ch                                                                                                                                                                            |                           |                   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|
| Time          | Item                                                                                                                                                                          | Who                       | Location          |
| 8.00          | Arrival and Coffee                                                                                                                                                            | All                       | Camden Valley Inn |
| 8.30          | Welcome & Outline of Day                                                                                                                                                      | Andrew Hutton<br>Ron Bush | Camden Valley Inn |
| 9.00          | Overview of Tahmoor South Mine Plan and Mining Constraints                                                                                                                    | Rob Oliver                | Camden Valley Inn |
| 9.30          | Overview Geomorphology Risk Management Zones                                                                                                                                  | Dr Chris Gippel           | Camden Valley Inn |
| 10.00         | Overview Ecology Risk Management Zones                                                                                                                                        | Matt Richardson           | Camden Valley Inn |
| 10.30         | Break - Morning Tea                                                                                                                                                           |                           |                   |
| 11.00         | Overview Aboriginal & Heritage Risk Management Zones                                                                                                                          | Jamie Reeves              | Camden Valley Inn |
| 11.30         | Overview Surface Water Risk Management Zones                                                                                                                                  | Tony Marszalek            | Camden Valley Inn |
| 12.00         | Overview Hydrogeological Conditions                                                                                                                                           | Dr Noel Merrick           | Camden Valley Inn |
| 12.30         | Break - Lunch                                                                                                                                                                 |                           |                   |
| 1.15          | Overview Subsidence Parameters for Tahmoor South Project                                                                                                                      | Daryl Kay                 | Camden Valley Inn |
| 1.45          | <ul> <li>Risk Management Zone workshop – Part 1</li> <li>Review risk management zones overlain onto mine plan</li> <li>Identify areas of RMZ constraints to mining</li> </ul> | All                       | Camden Valley Inn |
| 2.30          | Break - Afternoon Tea                                                                                                                                                         |                           |                   |
| 3.00          | Risk Management Zone workshop – Part 2<br>• Discussion on any areas where mine plan needs to be modified<br>• Mine Plan Refinement                                            | All                       | Camden Valley Inn |
| 4.30          | Workshop Summary & Close                                                                                                                                                      | Andrew Hutton<br>Ron Bush | Camden Valley Inn |

Venue Address: Camden Valley Inn - 290 Remembrance Drive, Camden Park

### How To Get There



From **Sydney**, less than one hour's drive – take the M5 Motorway and then the Camden/Bulli exit onto Narellan Road. Head towards Narellan and turn left at the Camden By-Pass. Go straight through the lights located after the Macarthur Bridge (do not turn right at the lights). The Camden Valley Inn is located 2kms along on the right hand side of Remembrance Drive (also known as Old Hume Highway). Entry to the Lodge is via the driveway on Wire Lane.

From **Wollongong** or **Goulburn**, about a 35 minute drive – take Picton Road into the main street of Picton and turn right into Remembrance Drive (also known as Old Hume Highway). The Camden Valley Inn is located on the left hand side, approximately 10 minutes further along Remembrance Drive. Entry to the Lodge is via the driveway on Wire Lane.

### **APPENDIX 3**

Tahmoor South Project Subsidence Workshop

Xstrata

8 March 2013





- Facilitator
- SLR GSS Environmental
- Xstrata Tahmoor South Team
- Lead EIS Consultant
- AECOM
- Technical Specialists
- Niche Environmental
- Fluvial Systems
- Gilbert & Associates
- Heritage Computing
- Geoterra
- SCT
- MSEC





| Friday 8 March<br>Time | met                                                                                                                                               |                           |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Ime                    | men                                                                                                                                               | Who                       |
| 8.00                   | Arrival and Coffee                                                                                                                                | AII                       |
| 8.30                   | Welcome & Outline of Day                                                                                                                          | Dean Fletcher<br>Ron Bush |
| 00.6                   | Overview of Tahmoor South Mine Plan and Mining Constraints                                                                                        | Rob Oliver                |
| 9.30                   | Overview Geomorphology Risk Management Zones                                                                                                      | Dr Chris Gippel           |
| 10.00                  | Overview Ecology Risk Management Zones                                                                                                            | Matt Richardson           |
| 10.30                  | Break - Morning Tea                                                                                                                               |                           |
| 11.00                  | Overview Aboriginal & Heritage Risk Management Zones                                                                                              | Jamie Reeves              |
| 11.30                  | Overview Surface Water Risk Management Zones                                                                                                      | Tony Marszalek            |
| 12.00                  | Overview Hydrogeological Conditions                                                                                                               | Dr Noel Merrick           |
| 12.30                  | Break - Lunch                                                                                                                                     |                           |
| 1.15                   | Overview Subsidence Parameters for Tahmoor South Project                                                                                          | Daryl Kay                 |
| 1.45                   | Risk Management Zone workshop – Part 1<br>• Review risk management zones overlain onto mine plan<br>• Identify areas of RMZ constraints to mining | AII                       |
| 2.30                   | Break - Afternoon Tea                                                                                                                             |                           |
| 3.00                   | Risk Management Zone workshop – Part 2         • Discussion on any areas where mine plan needs to be modified         • Mine Plan Refinement      | AI                        |
| 4.30                   | Workshop Summary & Close                                                                                                                          | Dean Fletcher<br>Ron Bush |





# Southern Coalfields Inquiry July 2008

- Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield
- surface feature, either by a 40° angle from the vertical down to the coal seam which is proposed to be extracted, or by a surface lateral distance of 400 metres, whichever is Risk Management Zones (RMZ) should be defined from the outside extremity of the the <u>greater</u>.
- RMZ are appropriate to mange all subsidence effects, especially valley closure and upsidence. L
- RMZ not intended to represent either a determination of 'significance' or to suggest or require the exclusion of mining. L
- Purpose of RMZ is to flag that proposed mining within the zone requires careful assessment and management.



xstrata

coal

- RMZs for:
- Rivers
- Streams 3<sup>rd</sup> order and above
- Cliff lines
- Major overhangs
- Valley infill swamps
- Aboriginal heritage sites
- Aquatic flora and fauna
- Riparian zone ecology
- Groundwater





## Significance

Tahmoor South Project

## Assessment of Significance

- Subjective
- No Guidelines

| Significance<br>Lot Highly Significant and/or Not Highly Sensitive<br>lighly Significant and/or Sensitive | Subsidence Management<br>& Controls<br>Standard subsidence management<br>Strict subsidence management and performance standards |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ighly Significant and Highly Sensitive                                                                    | Mining impacts maybe deemed unacceptable close to natural feature                                                               |



Tahmoor South Project Subsidence Workshop 6<sup>th</sup> to 8<sup>th</sup> March 2013

Mine Planning and Design

NAME AND ADDRESS OF AD

TANK IN AN TANK

## Mine Planning and Design



### Geology

- Lithology
- Structure (faults, dykes, plugs, etc..)
- Coal Quality
- Resource Recovery

## Hydrogeology

- Aquifers Impacts
- Height of Vertical Connection
- Drawdown Impacts

### Geotechnical

- Stress
- Rockmass characteristics (i.e. strength, cleating, jointing, thickness, etc.) I
- Strategy
- Barriers pillar design
- Pillar design
- Subsidence impacts (surface water, landscapes, infrastructure, etc.)



# Mine Planning and Design cont.'

### Gas

- Quantity
- Pressures
- Distribution
- Design Constraints (drainage capacity, pre/post drainage design) I
- Greenhouse gas emissions

### Ventilation

- Design Constraints (roadway heights, existing ventilation set-up, etc. )
- Design Criteria / Duty (air quantity to longwall face, gateroads, heat load, etc.)
- Strategy (vent shafts vs vent shaft / boosters, etc.) I
- Ventilation shaft locations



# Mine Planning and Design cont.'

### Production

- Equipment (conveyor belts, continuous miners, longwall, services, etc.) capacity, strategy, etc..
- Organisational Structure
- Coal Handling and Preparation Plant (CHPP)
- Surface infrastructure
- Financial
- Other production constraints (power, water, air, etc.) l
- Productivity

## Health and Safety

- Heat, dust, heat, etc..
- Emergency escape and response
- Traffic
- Human impacts / workplaces



# Mine Planning and Design cont.'

### Environment

- Archaeological (Aboriginal, heritage, etc.)
- Flora and Fauna
- Mine discharge
- Reject impalement
- Community concerns
- Noise and air
- etc.

## Legal and Permitting

- Licenses
- Leases
- Tenure
- E E C















## Bulli Seam Roof Contour





11











## Geomorphology

- Characterise the existing streams
- Stream geomorphic type ("Style")
- Types range in their fragility to disturbance
- The types have typical assemblages of geomorphic units
- Locate stream units/reaches with values sensitive to subsidence
- Rock beds at risk of cracking
- Knickpoints at risk of accelerated migration I
- Hydraulic control points of pools at risk of subsidence or cracking I
- Cliff lines
- > 5 m high; > 2 in 1 slope (63°)
  - Locate and describe condition





Plateau headwater streams

Waterfall

- Gorge streams

Pools, boulder/lomandra, Bedrock beds, cliffs Waterfall

Bargo River






















### Ecology and Heritage Tahmoor South Project

Matt Richardson and Jamie Reeves



Tahmoor South Project – Subsidence Workshop March 8 2013

#### Overview



#### 1. Ecology

- terrestrial threatened species records
- subsidence sensitive terrestrial species
- **EECs**
- > aquatic threatened species
- 🖌 RMZ's
- RMZ mitigation
- 2. Heritage
- Indigenous Cultural Heritage
  - Non-indigenous



### Ecology



Tahmoor South Project – Subsidence Workshop March 8 2013







### Aquatic threatened species



- 1. Previous records in region for:
- Adams Emerald Dragonfly
- Sydney Hawk Dragonfly
- Giant Dragonfly
- ➤ Macquarie Perch
- 2. Not recorded to date
- 3. Not likely to occur



### **RMZ Mitigation**



Impact assessment is defined by

## consequence x likelihood x proportion x duration

- RMZ can be reduced with further information relating to
- Subsidence prediction
- geomorphological mapping/data
- water quality/quantity assessment
- rock mechanics
- precedence



### Heritage









Dr Noel Merrick

### Tahmoor South Feasibility Subsidence Workshop

# <u> Overview – Hydrogeological Conditions</u>



### **e-Feasihi**

o-mc13





284000

282000

**Model Stratigraphy** 



E 277 000

N 6203 500

 $\odot$ 



26 sites in South Tahmoor <u>12 sites in North Tahmoor</u> PACKER TESTS:

3 sites in South Tahmoor LABORATORY CORE MEASUREMENTS PERMEABILITY



## **Bald Hill Claystone Barrie**









Mining and Background Effects



Vibrating Wire Piezometer Monitoring Sites







### Tahmoor South Subsidence Workshop

Daryl Kay (MSEC)



Friday 8<sup>th</sup> March 2013, Camden

### Outline

- Comparison of seam characteristics with Tahmoor North
- Comparison of subsidence predictions with Tahmoor North
- Comparison with predictions for Illawarra Coal Bulli Seam project (approved)
- Potential for increased subsidence at Tahmoor South

#### Depths of cover at cover at Tahmoor South and Tahmoor Tahmoor North



#### Seam thicknesses at Tahmoor South and Tahmoor Tahmoor North



# Subsidence Predictions - preliminary

Panel width of 305m, chain pillar width of 40m

|                                  |               | Lease Area      |               |
|----------------------------------|---------------|-----------------|---------------|
| Parameter                        | Beneath       | North-west of   | South-east of |
|                                  | Township      | Township        | Township      |
| Subsidence (m)                   | 1.4           | 1.2             | 2.0           |
| Tilt (mm/m)                      | 10            | 8               | 14            |
| Minimum Radius of Curvature (km) | 8 hogging     | 9 hogging       | 6 hogging     |
|                                  | 5 sagging     | 6 sagging       | 3.5/sagging   |
| Conventional Strain (mm/m)       | 1.5 tensile   | 1 tensile       | 2 tensile     |
|                                  | 3 compressive | 2.5 compressive | compressive   |

Not in current mine plan —

| Coal Bul  |      |
|-----------|------|
| Illawarra |      |
| with      |      |
| nparison  | F    |
| Com       | Sear |
### Potential for Increased Subsidence based on based on Tahmoor North North experience



### **APPENDIX 4**

Subsidence Workshop – Site Inspections Team Photo at Dogtrap Creek on 7 March 2013









































































Subsidence Workshop – Site Inspections Redbank Inspection on 7 March 2013





Subsidence Workshop – Site Inspections Redbank Inspection on 7 March 2013





Subsidence Workshop – Site Inspections Redbank Inspection on 7 March 2013





### **APPENDIX 5**



| S            |
|--------------|
| <b>d</b>     |
| ž            |
|              |
| O            |
| N            |
| ف ال         |
|              |
|              |
| Y            |
|              |
|              |
| 5            |
| 2            |
| Ø            |
|              |
| a            |
|              |
|              |
| $\mathbf{X}$ |
| 0            |
|              |
| $\mathbf{N}$ |

## Southern Coalfields Inquiry July 2008 Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield

- Risk Management Zones (RMZ) should be defined from the outside extremity of the surface feature, either by a 40° angle from the vertical down to the coal seam which is proposed to be extracted, or by a surface lateral distance of 400 metres, whichever is the greater.
- RMZ are appropriate to mange all subsidence effects, especially valley closure and upsidence.
- RMZ not intended to represent either a determination of 'significance' or to suggest or require the exclusion of mining.
- Purpose of RMZ is to flag that proposed mining within the zone requires careful assessment and management.

2

**RMZs for:** 

- Rivers 4<sup>th</sup>, 5<sup>th</sup>, 6<sup>th</sup> and 7<sup>th</sup> Order Streams
- Streams 3rd order
- Minor Cliffs higher than 10m and longer than 20 m
- Major Cliffs higher than 40m and longer than 200m - Waterfalls
- Mermaids Pool
- Valley infill swamps (None )
- Aboriginal heritage sites low significance
- Aboriginal heritage sites High significance
- Riparian zone vegetation Pomaderris brunnea
  - Groundwater GDE Stygofauna
- Giant Burrowing Frog

3

# Assessment of Significance

- Subjective
- No Guidelines

| Subsidence Management<br>& Controls | Standard subsidence management                     | Strict subsidence management and performance standards | Mining impacts maybe deemed unacceptable close to natural feature |
|-------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Significance                        | Not Highly Significant and/or Not Highly Sensitive | lighly Significant and/or Sensitive                    | lighly Significant and Highly Sensitive                           |

4

### **Risk Rating**

| <u>Likelihood Criteria</u> | 99% Probability | >50% and <99% Probability | >20% and <50% Probability | >1% and <20% Probability | <1% Probability |
|----------------------------|-----------------|---------------------------|---------------------------|--------------------------|-----------------|
|                            | ш               | D                         | C                         | В                        | A               |

|   | <u>Risk Matrix</u> |    |    |    |    |
|---|--------------------|----|----|----|----|
| ш | 11                 | 16 | 20 | 23 | 25 |
| D | Z                  | 12 | 17 | 21 | 24 |
| U | 4                  | ∞  | 13 | 18 | 22 |
| B | 2                  | 5  | 6  | 14 | 19 |
| A | 1                  | m  | 9  | 10 | 15 |
|   | 1                  | 2  | ŝ  | 4  | S  |

|   | Significance / Sensitivity |
|---|----------------------------|
| Ŋ | High                       |
| 4 | High Medium                |
| ŝ | Low Medium                 |
| 2 | Low                        |
| 1 | Not Applicable or Very Low |

| <u>tion</u>             |           |             |          |
|-------------------------|-----------|-------------|----------|
| <b>Risk Classificat</b> | High Risk | Medium Risk | Low Risk |



### **APPENDIX 6**

### Tahmoor South Project Risk Management Zones Tahmoor North & Tahmoor South Mine Plans



### Risk Management Zones <u>Tahmoor North & Tahmoor South Mine Plans</u>



Risk Management Zones Streams - 3<sup>rd</sup> Order



Risk Management Zones Streams - 4th Order


Risk Management Zones Streams - 5th Order



Risk Management Zones Streams - 7th Order



#### Risk Management Zones <u>Streams - 3rd Order Streams and Above</u>



Risk Management Zones Natural Features - Cliffs Minor



Risk Management Zones Natural Features - Cliffs > 200 m Long & 40 m High



Risk Management Zones Natural Features - Mermaid Pool



#### **Tahmoor South Project** Risk Management Zones Natural Features - Waterfalls



**Risk Management Zones** 

Natural Features – All Cliffs & Waterfalls & Mermaid Pools



**Risk Management Zones** 

Ecology - Giant Burrowing Frog – Recorded Location



Risk Management Zones Ecology - Stygofauna Recorded Location



Risk Management Zones Ecology - Riparian Vegetation



Risk Management Zones

Ecology - All Giant Burrowing Frog, Stygofauna and Riparian Veg.



## Risk Management Zones Archaeological Sites – Low Significance



Risk Management Zones Archaeological Sites – High Significance



Risk Management Zones

# Archaeological Sites – High & Low Significance



Risk Management Zones

All – Streams, Natural Features, Ecology & Archaeological Sites



Risk Management Zones

All – Streams, Natural Features, Ecology & Archaeological Sites



AECOM

Tahmoor South Project Environmental Impact Statement

This page has been left blank intentionally.