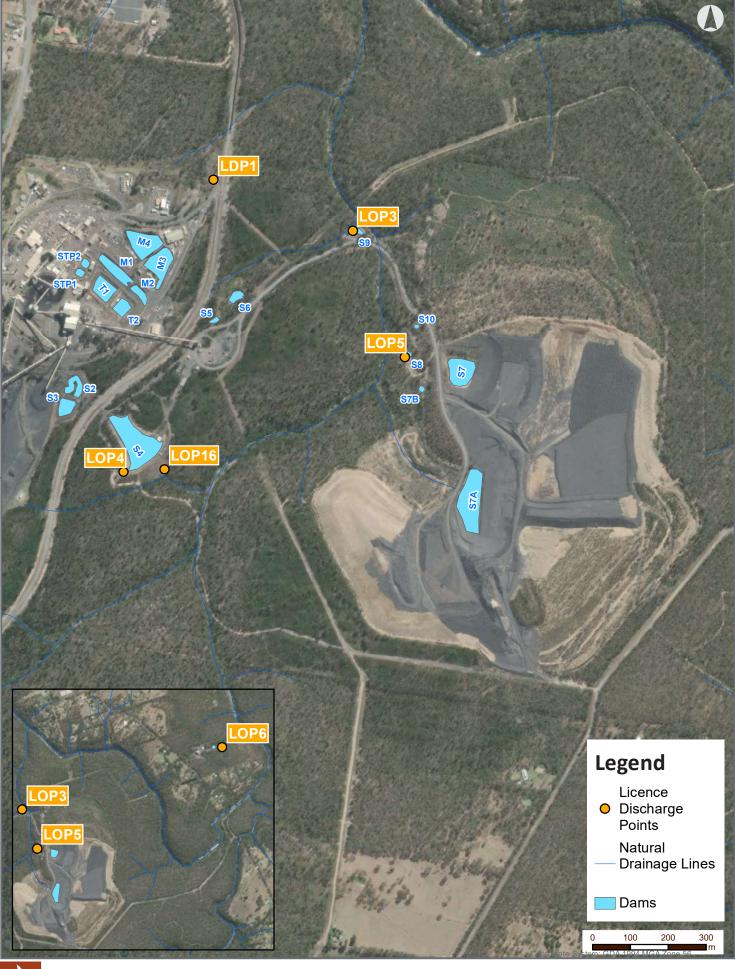


			Assessment	A			Estimated contribution 02/LaA0	Estimated contribution Of U.S.O.		
1995 1995	Vear				Estimated contribution Q1 (LA10)	Estimated contribution O2 (LA10)			Description	
1920										
1,000	2015				<53	<54	<47	55/6		
1905 1										
2000 P.										
1									Remembrance Driveway	
Color		P1		53						No
1									,	
1992 1992 1993 1994 1995										
1920 1920										
1920										
1					,					
2015 1										
1										
2019 P2										
2009 P2										
2022 1		P2	45	N/A^			<42**	<44	Olive Lane (End of Cul-de-sac)	Yes
2022 1	2020				<46***	<44**	<46**	<45**		
2023 2024 2024 2024 2024 2025								<51***		
2014 1										
2015										
2015										
Company Comp										
1907 1908 1909										
19										
According to the property of										
Ada** Ad5** Ad2* Ad2** Ad2** Ad4** Ad5** Ad2** Ad2** Ad4** Ad5** Ad2** Ad4** Ad5** Ad2** Ad4** Ad4**		pq	45	N/A^						Yes
A51		13	75	19/0					(Service Station)	103
1002 1002 1003 1004 1005										
1003 1004 1005										
2024					<42**	<44**	<50**(35)	46/7**(<37)		
2015 2016 2016 2016 2016 2016 2016 2016 2017 2018 2019 P4	2024				46/7**(<35)	46/7** (<35)		43*		
2016 2017 2018 2019 P4	2014				<35 (<35)	<43 (<35)	<38 (<35)	<30		
2017 2018 2019 P4	2015				<30	40/1 (-)	40/1 (-)	39/40 (-)		
2018 P4										
P4										
2020										
2021		P4	45 (37)	38					Stratford Road	Yes
Company										
Company										
2024 2015										
2014 2015 2016 2016 2016 2017 2018 2019 2019 2019 2019 2019 2019 2019 2019										
2015 2016 2017 2017 2018 2019										
2016 2017 2018 2019										
2017 2018 2019 P5 45 (37) N/A 235										
2019										
Charlies Point Rd Driveway Coarlies Coarlies Coarlies Coarli										
2021		P5	45 (37)	N/A^					Rockford Road	Yes
2022 2023 2024 2025										
2023 P6 35 <35 (35) (35) (35) (36) (35) (36) (35) (35) (35) (35) (35) (35) (35) (35										
2024 33/8** (<35)										
2023 P6 35 <35 <40 (<35) <35 (<35) Charlies Point Rd Driveway Entrance 2 Yes 2023 P7 <44*** <40 <50*** <35 (*35) Remembrance Driveway (*Gorden Central)										
2023 P7	2024				<3//8 ⁻⁺ (<35)	<44/8* (<35)	N/A	35*		
2024 35 <35 (<35) <35 (<35) 35 34 Entrance Yes 2023 P7 < 44*** <40 <50*** <35 Remembrance Driveway (Garden Control)	2023	P6			<35	<35	<40 (<35)	<35 (<35)		
2023 P7 < 44*** <40 <50*** <35 Remembrance Driveway (Gorden Control)		, ,		35					Entrance	Yes
2023 P7 <44*** <40 <50*** <35 (Cordon Control)	2027			20	(-55)	(100)	20			
2024 41 <34/5 <45/6* 32 40* (Garden Lentre) Yes		P7			<44***		<50***			
	2024			41	<34/5	<45/6*	32	40*	(Garden Centre)	Yes

NOTES: # Ambient noise controlled by insects (2-5kHz)

* Includes DECC INP +2dB(A) allowance (INP Section 11.1.3)


** Includes +2dB correction for low frequency noise (NPfl Table C.1)

** Includes +5dB correction for low frequency noise (NPfl Table C.1)
() Noise Assessment Goal for REA

^Noise Agreement in place

Tahmoor Coal EPL Discharge and Overflow Points

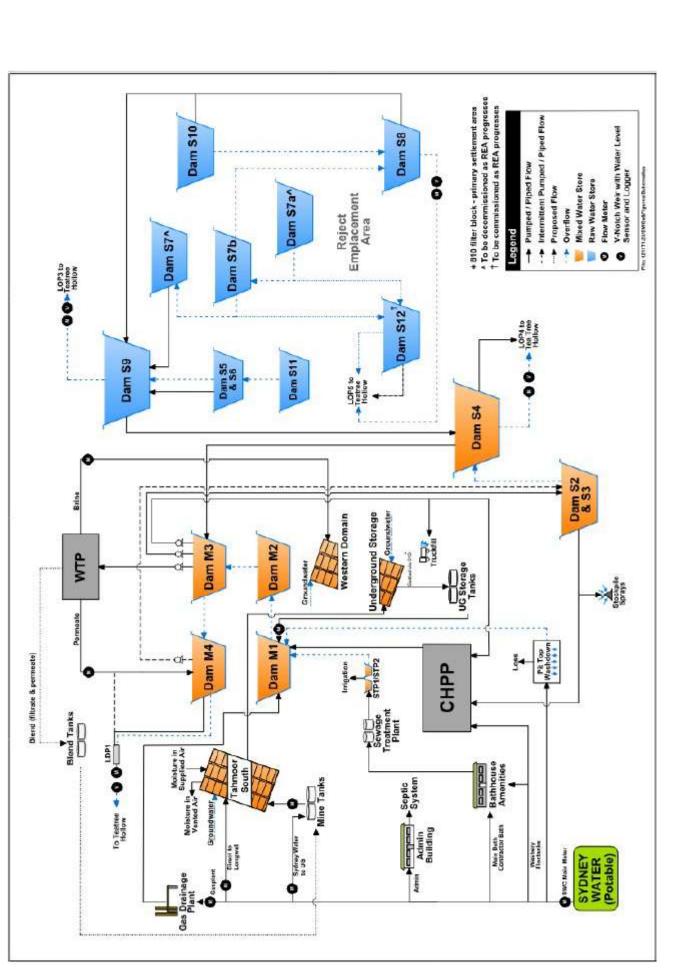
Access and Use Constraints:

This webmap is intended to be used by SIMEC Mining and other stakeholders involved in the development and operation of SIMEC Mining's mines.

Access to this webmap is restricted to users authorised by SIMEC Mining only. You may not reproduce, adapt, modify, communicate or use any part of this webmap other than for activities related to development and operation of SIMEC Mining's mines.

Data Sources: © NSW DFSI (2019) © NSW Mining (2019) © SIMEC (2019)

The data displayed in this webmap has been collated from various sources.
The source data may contain inconsistencies or omissions, may not be to scale, may not be current and may present indicative information only. SIMEC Mining does not warrant the accuracy or completeness of the contents of this webmap.



		Estimate	ed Wate	r Volume
Water Storage Name	Beginning 2024	End 2024	Capacity	Comments
M1	1.8ML	1.8ML	1.8ML	
M2	0.5ML	0.5ML	0.5ML	M series Dams act together to treat mine water pumped from
M3	9.0ML	9.0ML	9.0ML	Underground and stormwater, discharged via LDP1
M4	8.0ML	8.0ML	8.0ML	
M5	0.5ML	2.0ML	3.0ML	First settling Dam for No.2 Shaft Site area (stormwater)
M6	2.0ML	4.5ML	4.5ML	Second settling Dam for No.2 Shaft Site area (stormwater)
S2/S3	8.0ML	8.3ML	8.3ML	The Dam is designed to act as a retention basin with a
S4	7ML	23ML	36.9ML	controlled outlet. Discharges via overflow Point 4.
S5	0.3ML	0.5ML	0.5ML	Silt Trap only. Discharges to S6
33	U.SIVIL	U.SIVIL	U.JIVIL	This Dam is designed to act as a retention basin with a
S6	1ML	1.5ML	1.5ML	controlled outlet.
30	TIVIL	1.JIVIL	1.JIVIL	This is the main catchment for runoff from the REA. The dam
				is a retention basin during peak rainfall events. All water is
S 7	10ML	20ML	41.5ML	pumped into Dam S4 via S9.
S7A	10ML	12ML	12.0ML	These Dams are designed to act as retention basins with a controlled outlet to S7 Dam.
S7B	0.2ML	1.0ML	1.0ML	
58	1.5ML	1.8ML	4.5ML	Dam retains overflow from S7b. Pumps to Dam S9. Discharges via LOP5.
S 9	0.15ML	0.16ML	0.4ML	Silt trap only for sealed Haul road. Wet werll pumps to Dam S4. Discharges via LOP3.
STP1	590KL 590KL	590KL 590KL	590KL 590KL	Treated effluent overflows to M1 Dam.
Tank No.1	250KL	250KL	250KL	Underground potable water supply
Tank No.2	250KL	250KL	250KL	Underground potable water supply
TUTIK NO.2		230KL	230KL	onacigiouna potable water suppry

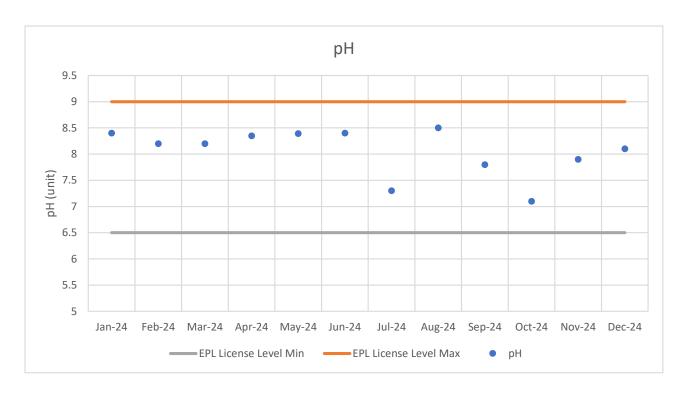


Figure 1 Monthly Compliance Monitoring of pH at LDP1 for the reporting period.



Figure 2 Monthly Compliance Monitoring of EC at LDP1 for the reporting period.

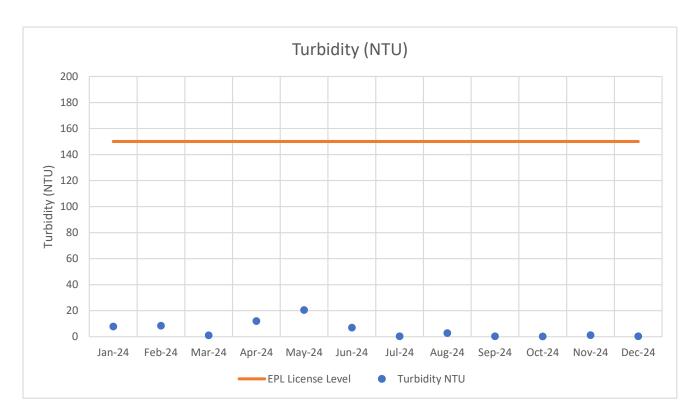


Figure 3 Monthly Compliance Monitoring of Turbidity at LDP1 for the reporting period.

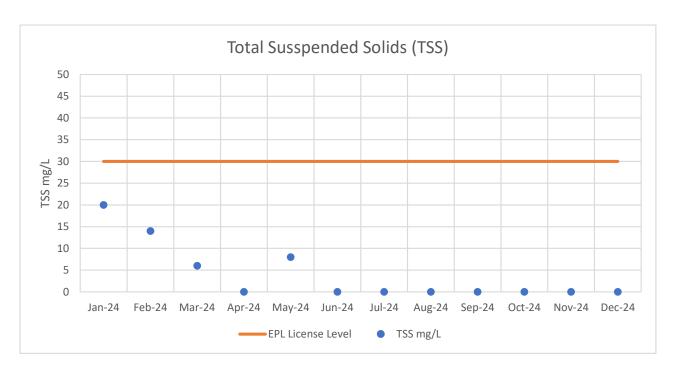


Figure 4 Monthly Compliance Monitoring of Total Suspended Solids at LDP1 for the reporting period.

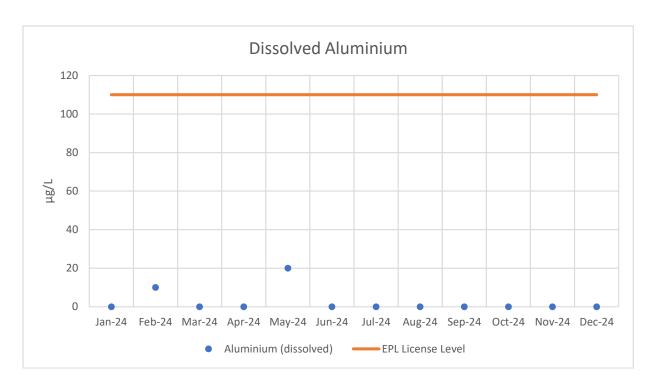


Figure 5 Monthly Compliance Monitoring of Dissolved Aluminium at LDP1 for the reporting period.

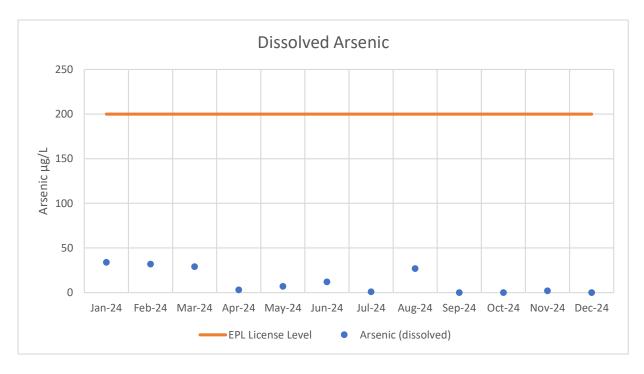


Figure 6 Monthly Compliance Monitoring of Arsenic at LDP1 for the reporting period.

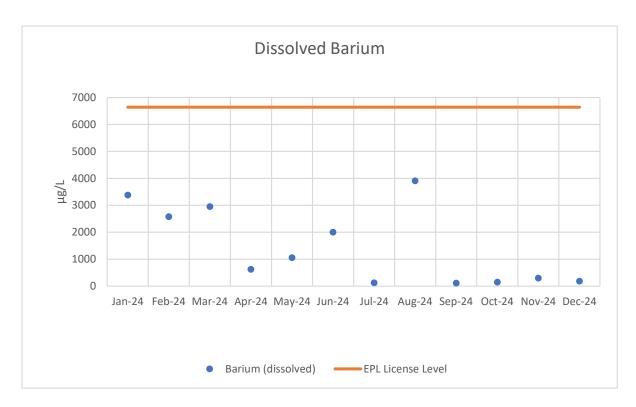


Figure 7 Monthly Compliance Monitoring of Dissolved Barium at LDP1 for the reporting period.

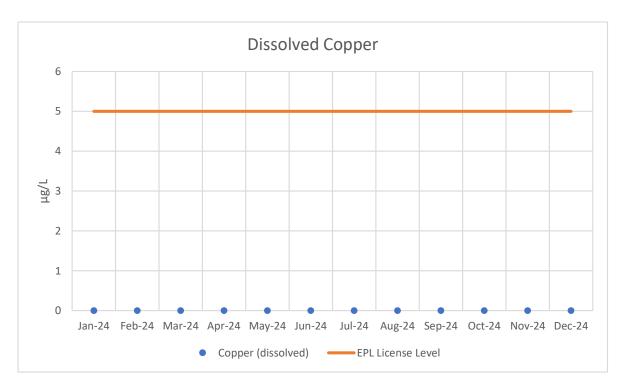


Figure 8 Monthly Compliance Monitoring of Dissolved Copper at LDP1 for the reporting period.

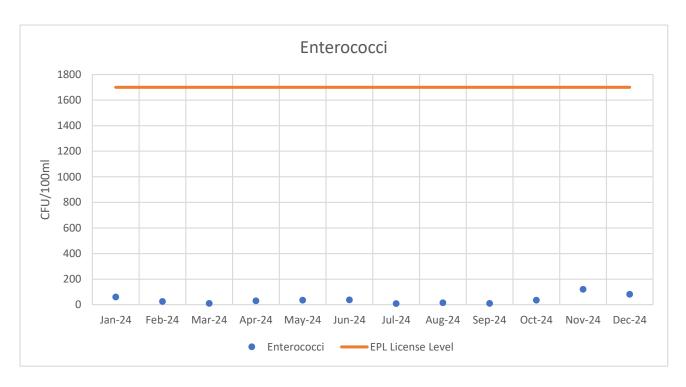


Figure 9 Monthly Compliance Monitoring of Enterococci at LDP1 for the reporting period.

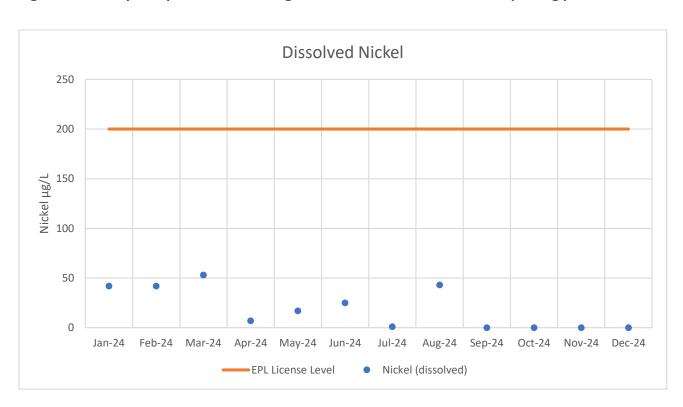


Figure 10 Monthly Compliance Monitoring of Nickel at LDP1 for the reporting period.

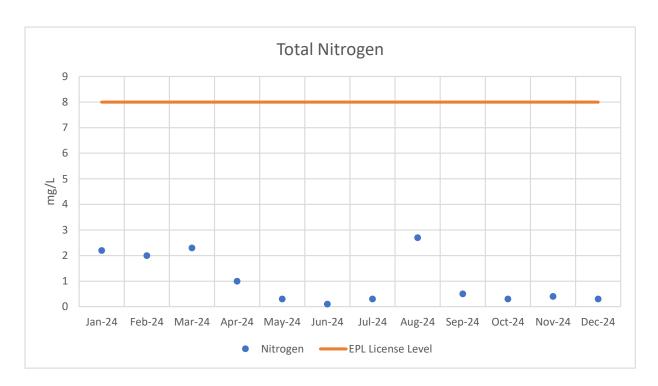


Figure 11 Monthly Compliance Monitoring of Nitrogen at LDP1 for the reporting period.

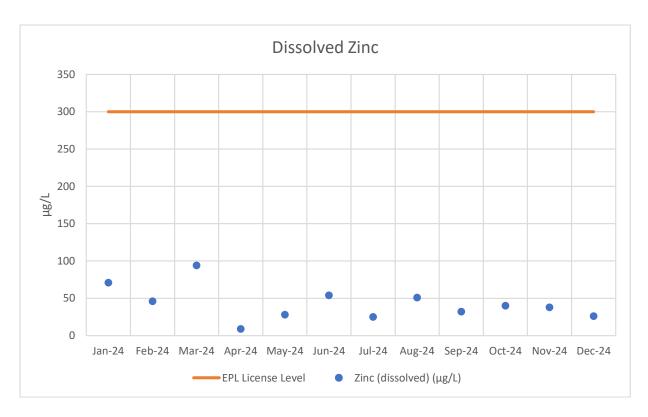


Figure 12 Monthly Compliance Monitoring of Dissolved Zinc at LDP1 for the reporting period.

				1 11 11			E Su				H d				L				10	
	Wei	well Name		F11 10p 1			FIL 10p 2	4			F10 10p 4	+			REAL	3 -	ı		REA2	2 2
Date	dunec	Sample Ivaline 8/0	8/02/2024 5/06/	5/06/2024 2/09/2024	5/12/2024	8/02/2024	21	2/09/2024 5/	5/12/2024	8/02/2024	5/06/2024	2/09/2024	5/12/2024	8/02/2024	5/06/2024	2/09/2024	3/12/2024	8/02/2024	5/06/2024	2/09/2024
Parameters	Units P	PQL	╁	+	+	101	+	+	101							1			101/00/2	1011001
Initial Standing Water Level	-	0.01								-	27.15	27.51	28.16	41.09	41.02	41.03	40.68	32.34	32.47	32.04
Final Standing Water Level		0.01								—	27.15				41.02			32.34	32.47	
Total Well Depth		0.01	_							32.85	32.84	32.89	32.67	55.90	55.85	56.19	56.00	54.97	54.79	
Flow estimation					Domina	Dominio	Domeiod	Domina	During			Hydrasleeve			Hydrasleeve	Hydrasleeve		Hydrasleeve	Hydrasleeve	Hydrasleeve
Volume of Water Purged	Т	1	pairied pairied	nor nor	Dalling	Dalling	Dalling					1	1		2	1	1	1	2	1
Total Dissolved Solids (field)	mg/L 0	0.10								390	252	442	351	343	316.55	360	526	146	3155.35	109
Dissolved Oxygen (field)		0.01								4.39	4.96	1.5	2.59	1.20	3.38	4.57	1.30	1.21	2.49	1.68
Electrical Conductivity (field)	_	1								602	388	829	541	528	486	554	734	225	239	169
311 27 22		3								t	i		Equipment malfunction.		2	9	į	9	0.00	3
pri (neid)	briums and	01.0								0/.0	ct./	Z 18:0	ot possible to	5.93	6.43	86.0	0./1	0.43	9.78	6.33
Redox (field)	I Van	90 1				\dagger	+			390	3.1	181	430 80	-207	19	98	0.52	-257	-65	68
Temperature (field)		0.1								17.3	16.9	16.4	19.5	17.8	17	18.6	6.61	17.5	16.8	17.5
Calcium - Dissolved	. 1	0.5								31	25	28	29	2	0.7	2	3	27	38	37
Potassium - Dissolved		0.5								13	11	6.3	10	1	1	2	1	6.4	2	3
Sodium - Dissolved	mg/L	0.5								30	23	58	36	84	95	92	94	8.6	9.7	11
Magnesium - Dissolved	mg/L (0.5								10	7.2	18	13	5.4	03	6.1	5.7	2	2	3
Trdrr	E-00-0-1	,				1	+			001	5	000	001		2	7	oc.	i.	100	001
riardness	mgcacOs/L	5 4	1					1	1	077	76	UCI 4	071	17	c ×	3/	30	C 4	100	nol 4
Bicarbonate Albalinity as CaCO3	mo/I	0 4								2 5	7 =	7 5	7 9	7 5	7 5	7 65	7 =	7 8	2 0	7 02
Carbonate Alkalinity as CaCO3		0 4								200 4) Y	27 4	£	27 (£ 5	3 4) Y	6 4	31 %	OCI Y
Total Alkalinity as CaCO3		2 5								150	0110	120	140	120	140	130	110	66	110	130
Sulphate, SO4	mg/L	-								29	39	120	57	10	10	12	12	12	2	9
Chloride, Cl	mg/L	1								26	14	30	18	80	79	84	84	4	12	10
Ionic Balance	%									-22	6	-2	-5	φ	×	ņ	-5	ç	-2	∞.
Total Misses										1.1	,	9	1.6	c	-			,	-	0
Fluoride F	ma/I	1.0								0.7	7 0	5 6	0.1	0.2	0.1	2.0	5.4	0.3	1.3	0.0
Dissolved Organic Carbon		1								28	15	5	23	7	2	1	2	15	15	- 1
Phosphorus - Total		0.05								0.75	0.3	0.4	0.57	90'0	<0.05	<0.05	90.0	90.0	0.08	0.09
Aluminium-Total		10								099	580	1700	3300	150	130	160	150	1300	2600	2600
Arsenic-Total		1								4	5	5	5	⊽	⊽	⊽	-	1	2	3
Barium-Total	Тgн	-								91	72	120	160	08	73	81	98	29	35	38
Cobalt-Total	ηg/L	-								4	2	6	∞	5	3	5	3	7	1	2
Copper-Total		1								7	7	∞	16	2	⊽	2	2	5	4	2
Iron-Total		01								7	2	3800	5500	130	2	11000	14000	2	3	3100
Lithium-Total	ug/L					1	1		1	1200	7	2	9	088	020	130	130	6/.	1	5 8
Manganese-Total	µg/L	0 -								250	2/9	740	1400	84 6	630	910	068	7 0	140	320
Nickel-Total	hg/L									7 0	7 50	OI 9	2 0	7 7	4 7	53	27	m 7	7 7	n 4
Selenium Total	H&L Holl	- -								096	230	- ▽	√	7 -	7 9	o	4 \(\nabla	140	051	¬
Strontium-Total	ng/L									89	79	240	220	33	21	61	22	23	12	190
Zinc-Total	ng/L									3800	1700	470	720	14000	13000	37	32	2400	2500	36
Aluminium-Dissolved	ng/L	10								40	40	40	09	20	20	20	<10	120	140	1100
Arsenic-Dissolved	T/gn	_								2	2	2	2	⊽	⊽	⊽	⊽	⊽	2	2
Barium-Dissolved	µg/L						+	+		84 -	38	79	96	74	77	76	82	21	24	27
Connect Dissolved	ug/L										7	s 7	, ,	7 7	7 7	7 7	7 7	7 .	7 7	- 7
Lithium-Dissolved	Hegh.									0 4	- ▽	7 ~	0 0	7 91	7 🗸	7 8	0100	4 \	7	7 6
Manganese-Dissolved	T/Sn	2								250	7 7	220	2200	700	120	790	140	16	-	210
Nickel-Dissolved	1/gn	-								110	\$	9	29	45	720	49	730	⊽	61	-
Lead-Dissolved	T/gn	1								∀	10	⊽	7	⊽	43	⊽	47	∀		7
Selenium-Dissolved	пgЛ	-								⊽	⊽	⊽	⊽	⊽	⊽	7	⊽	7	7	⊽
Strontium-Dissolved	µg/L	- -					+	+		270	240	061	210	91	17	61	⊽ 8	120	150	180
Zinc-Dissolved	µg/L	- 9								64	36	45	21	13000	14000	41	21	7	\\	9
Iron-Dissolved	цg/L	10					-			L VIII										2100

		3/12/2024	26.27		38.32	. -	215.8	1.15	331	7.38	-23.2	20.8	1 91	21	-		37	0 8	8 ,	0 8	86	4	-14	0.5	0.1	2	<0.05	340	27	‡ ⊽	4	730	45	29	2	- ⊽	83	48	120	⊽ [5	37	7 -	50	37	\\$	⊽	⊽ 7	7 89	01
7.7	42	2/09/2024	25.6		38.57	Hydrasiceve	247	10 37	381	6.7	68	17.7	28	36	2	ç	75	0 5	130	0 5	34	7	×.	0.7	0.2	3	<0.05	850	2 2 35	6 6	9	1500	75	83	5	7 🗸	110	100	220	1 5	7 0	7 ~	99	9	2	⊽	⊽ 8	2,5	100
DE	REA7	5/06/2024	23.46	23.46	38.28	Hydrasieeve	212.55	4 45	326	7.03	4	17.8	2 55	45	9.0	Ş	01 %	0 2	130	0 5	31	9	-2	0.7	0.2	3	<0.05	1100	2	2	2 50	2	75	74	٠.	√ 8	87	1700	50	2 5	7	7 —	. □	89	\$	_	⊽ 3	88	50
		8/02/2024	25.85	25.85	38.31	Hydrasieeve	225	2.74	347	7.58	-267	5.61	30.0	8 8	1	2	81 4	0 3	071	0 5	27	i 9	4	8.0	0.2	9	0.05	530	2 2	3 ∇	4	70	27	4	_ ,	₹ 2	45	069	290	2 2	2 7	7 2	73	\$	2	⊽	7 7	17	140
		3/12/2024	38.41		40.62		915	145	1414	6.32	22.8	19.30	63	260	18	001	077	0 5	OII ?	0 -	46	320	9	0.1	0.3	2	0.07	1400	- 8	6 %	2	23000	29	2300	28	7 🗸	360	43	20	⊽ 8	33	3 ▽	17000	31	2000	25	⊽ ₹	340	42
2	9	2/09/2024	38		41.26	Hydrasieeve		1	1483	5.77	94	17.20	91 5	200	19	061	071	0 5	051	0 2	45	330	9-	0.7	0.3	⊽	<0.05	200	⊽ 8	60 64	2 2	25000	29	2100	31	7 \	370	31	50	⊽ 8	34	5	31	2000	25	⊽	730	330	22000
DEA	REA6	5/06/2024	38.26	38.26	40.36	Hydrasieeve	2 845	2.91	1298	5.9	03	17.10	1 4	220	17	5	16	0 5	0+1	0 9	44	310	÷	0.1	0.3	2	90.0	820	- 8	25 25	-	2	28	2000	27	320	30	31000	01	⊽ 8	2 %	3 =	∀	26	1100	24	240	340	28000
		8/02/2024	38.57	38.57	40.50	Hydrasieeve		1	1373	5.67	-199	17.90	707	210	15	9	OII 9	0 5	140	0 5	9+1	310	4	0.3	0.4	5	90.0	520	⊽ 8	33 88	(n	29	2100	26	2	340	53	23000	50	⊽ 5	74	j ∨	31	1800	22	⊽	D 026	097	10000
		3/12/2024	1.52		10		162	201	250	3.99*	211.0	18.90	7 (*	31	4	5	77	0	7 4	0 0	92	48	e 6	8.0	0.1	4	0.07	1200	7 8	6 ×	'n	7900	4	460	15	2l ∇	16	750	20	⊽ \$	75	7 —	01>	3	87	10	⊽ ₹	7 7	580
		2/09/2024	1.85		7.34	Hydrasieeve	230	16.6	354	5.37	251	15.50	‡ (r	04	6.5		er ,	0 2	2 ,	0 =	G =	× ×	4	0.7	0.1	5	0.07	1000	- 6	56 -	4	18000	9	710	13	2 0	25	430	20	⊽ 8	2 V	7 🗸	9	011	7	⊽	⊽ 5	350	010
DEA.	REA5	5/06/2024	1.74	ш	7.41	_	193	5.57	297	6.05	-30	16.70	0 ("	39	6.3		33	0 =	4 4	0 =	: 2	77	4	0.4	<0.1	2	90:0	1200	2 500	99 92	2	9	9	1200	41	⊽ %	410	18000	0 ;	⊽ 8	70	- ▽	. △	3	420	6	⊽ 8	770	01>
		7/02/2024		1.82		+	270	2.16	414.00	9	-212	17.60	# (r	. 14	6.7	o,	38	0 9	<u>8</u>	0 =	91 9	66	-12	0.4	0.1	9	90'0	1000	1001	17	5	9	1000	18	× .	7 %	930	9400	30	⊽!	، د	4 △		180	10	⊽	7 7	67	20
		3/12/2024	35.74		54.00		448.5	2.63	620	61.9	34.1	9.61	22	45	5.5	,00	90	0 5	۷,	0 5	6 =	100	-10	0.2	0.1	3	<0.05	490	2 %	13	5	14000	14	1200	15	7 🗸	150	40	010	⊽ 5	14	. □	3800	14	640	6	⊽ ₹	7 091	29
		2/09/2024	34.77	-	53.91	1ydrasieeve	396	981	605	5.84	182	17.3	67	35	5	3	1,	0 3	100	0 5	01	82	ç, o,	0.3	<0.1	-	<0.05	260	⊽ 8	e 2	, m	0066	13	820	12	~ \	160	79	50	⊽ 5	70	- ▽	15	520	∞	⊽	D 091	160	2900
REA	REA4	4	35.28		54.55		7	88.0	487	6.3	105	16.40	67	5 5	6.7	001	100	0 8	7/6	0 8	7	. 89	10	0.3	<0.1	3	<0.05	200	- SE	≥ ∞	, w	2	111	570	6	130	51	11000	010	⊽ 3	G ×	• ⊽	. △	10	580	7	₩ 051	120	830
		6/03/2024	35.92	-	53.71	_	197	0.94	304	6.74	12	18.80	15	5 41	2	3	,	0 3	071	0 2	221	, 11	7	0.7	<0.1	11	<0.05	310	⊽ 3	200	1 4	2000	=	64	v,	7 \	180	100	01	⊽ ¥	\$ △	7 -	6	\$. 6	⊽		180	40
		8/02/2024	36.1	-	53.53		186	1 36	287	6.44	-285	17.90	F 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4	2	00	90	0 3	071	0 2	277	2	1 4	8.0	<0.1	7	<0.05	410	⊽ 5	2	1 4	==	75	5	2	7 2	110	1600	10	⊽ 5	¥ 7	7 -	=	27	3	⊽		UCI 53	001
		3/12/2024	36.03	П	39.75	T	585	0.74	818	6.51	104.1	20.4	3 4	51	3	ē	1/	0 5	4 4	0 5	, 9	99	-23	9.0	<0.1	9	<0.05	089	7 5	9/	· ∞	5900	4	470	∞ -	- -	100	190	280	⊽ \$	0+ -		770	2	16	3	⊽ 7	7 8	120
		2/09/2024	34.22		39.95	Tydrasieeve	474		724	5.67	184	16.4	7.8	23	5.1	30	2	0 5	+ 4	9 5	1,	80	-14	0.5	<0.1	3	<0.05	640	6 (8 9	4	2600	5	099	6	- -	100	310	470	- 4	ç 9	2 6	4	400	5	⊽	□ 0	750	2800
DEA3	REA3	5/06/2024	35.36	35.36	39.83		167	3.89	256	6.83	-56	16.6	97	17	4	10	10	0 8	78	? \$	4	. 86	S S	0.4	<0.1	5	<0.05	490	6 2	ŧ 9	4	2	4	430	7	T 16	270	0098	20	⊽ =	ţ 4	- -	\ \	2	260	4	⊽ 8	050	1300
		8/02/2024	_	ш	39.56	-	325	164	499	6.05	-185	17.3	5 5) =	3		80	0 3	60	0 3	3	87	-33	0.5	<0.1	==	<0.05	310	2	5 5	0 0	3	360	9	-	76	360	0009	50	- ;	21	3 6	2	130	3	⊽	⊽ 3	9000	1800
		3/12/2024	31.32		55.01		187.8	1.07	288	6.84	291.1	19.2	Cc 4	12	2	0	16	0 5	071	000	8	×	, v	0.7	0.1	10	0.1	2300	£ 92	2	9	3200	2	330	2	უ ⊽	190	32	30	⊽ ;	3 ≥	2	06	▽	\$	⊽	7	17 7	2

2024 Annual Rehabilitation Walkover

Refuse Emplacement Area

Document tracking

Project Name	Tahmoor Coal Pty Ltd Rehabilitation Monitoring 2024
Prepared by	Natalie Brumby
Version Number	1.0
Status	Final

Table of Contents

2
2
2
3
3
6
7
7
8
8
9
9

Abbreviations

Abbreviation	Description
REA	Refuse Emplacement Area

1.0 Introduction

Tahmoor Coal has undertaken the Annual Rehabilitation Walkover for 2024 of the 9 rehabilitated areas located within the Refuse Emplacement Area (REA) of Tahmoor Coking Coal Operations in Tahmoor.

Ecological Australia Pty Ltd has completed the work for the permanent monitoring plots in Appendix B.

The rehabilitation monitoring was undertaken in accordance with the Tahmoor Coal Rehabilitation Management Plan (TAH-HSEC-00402), Rehabilitation Strategy (TAH-HSEC-00401) and Rehabilitation Monitoring procedure (TAH-HSEC-00012). This report and it's Appendices document the results for 2024. This is completed by the following:

- An annual walkover inspection of all areas within the Refuse Emplacement Area (REA) where rehabilitation activities have been completed including newly established revegetation (Appendix A); and
- Monitoring of permanent monitoring sites within mine closure Domain 3 within the REA (see Figure 1) that have been established in each development stage to assess revegetation progress (Appendix B).
- Monitoring of Grass Trials established with in older sections of revegetation to consider the efficacy of planting and/or seeding with native grasses to increase native vegetation cover and increase organic matter in the soil profile, in patches with limited vegetation (Appendix A).

These guidelines state:

"The objective of this monitoring is to evaluate progress of rehabilitation towards fulfilling long term land use objectives, such as the development towards a self-sustaining ecosystem."

1.1 Background

Rehabilitation of vegetation within the REA has been carried out since 1993, as each stage of the refuse emplacement was constructed. The permanent monitoring sites program began in 2010 with the establishment of two permanent plots within each existing section of the REA and two reference site plots within relatively undisturbed native vegetation nearby of the same Plant Community Type. As each stage of the REA was completed permanent plots have been established following revegetation. In addition, further plots were established in areas greater than four hectares to address the recommendations for native vegetation monitoring provided in the Rehabilitation Strategy. In future, in

accordance with monitoring guidelines, additional permanent plots will be installed as each area of revegetation within the REA reaches an age of 5 years from planting.

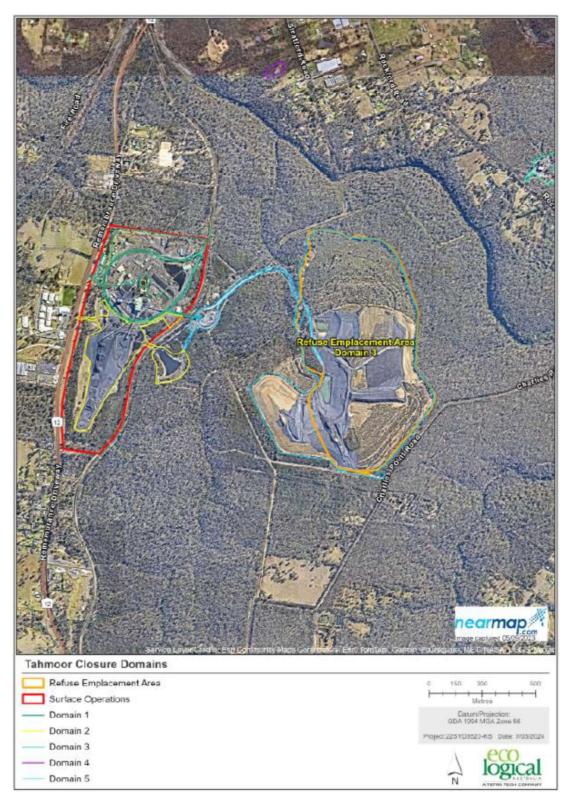


Figure 1 – Tahmoor Coal surface operations and refuse emplacement area.

2.0 Methodology

Monitoring of permanent sites in the rehabilitation areas provides information regarding changes in both vegetation growth, senescence, colonisation and species diversity. In addition, indication of the success of the rehabilitation is gained through comparison of both vegetation structure and species composition with the reference sites monitored in nearby bushland. Methods for measuring these values include:

- Detailed species counts and cover within 2 m x 2 m nested quadrats;
- Species diversity within 2 m x 2 m nested quadrants;
- Canopy cover;
- Growth rates of trees via Diameter at Breast Height (DBH) measurement;
- Reproductive potential, progress within a 20 m x 10 m plot; and
- Photographic monitoring of plots is also implemented.

The walkover inspection records details across each stage and includes information on the following factors:

- evidence of soil profile development and visual assessment of surface materials;
- evidence of erosion and stability, and function of erosion and sediment control structures
- growth rates and evidence of plant mortality or dieback
- species diversity including identification of target species
- presence of over-storey, midstorey and understorey species
- evidence of reproductive potential
- evidence of biological nutrient cycling
- occurrence of potholing or slumping and evidence of spontaneous combustion
- evidence of contamination or other limitations to vegetative establishment.

Native grass species have been trialed via direct seeding, in areas where the existing vegetation within established revegetation areas was sparse. These grass planting trials were monitored to review the survival and growth of planted species.

More detailed presentation of the monitoring results is included in the appendices:

- Appendix A Monitoring 2024 Mine Closure Domains 1 5 Permanent Sites; and
- Appendix B Monitoring 2024 Annual Walkover Refuse Emplacement Area and No. 2 Shaft Power Corridor.

These appendices include collated details of the recorded monitoring results, the collected field data sheets, and monitoring photographs.

3.0 Results

3.1 Previous Monitoring Results

Revegetation across the REA was highly variable with some sections approximately 31 years old and others newly established with seeding carried out 24 months prior to monitoring. The native species included in the revegetation mix also varies, in both diversity and structural representation, between those areas revegetated prior to 2006 and those revegetated more recently.

Characteristics of sections revegetated prior to 2006 include (Stages 1-5, 6 & 9):

- Canopy species including Eucalyptus species, Angophora species and Allocasuarina littoralis (Black She-oak) providing canopy cover ranging from good to limited, heights up to 10 m and exhibiting good growth. Second generation A. littoralis were common near mature plants, with other canopy species second generation plants beginning to appear.
- Smaller tree species including Acacia decurrens (Black Wattle) and Acacia binervia (Coast Myall) were also regenerating with second generation individuals present.
- A midstorey that varied from dense stands of Kunzea ambigua (Tick Bush) or the non-local species Leptospermum laevigatum (Coast Teatree) to scattered Acacia species interspersed with other less abundant native species.
- Highly effective weed control actions reduced weed cover where extensive stands
 of the weed Andropogon virginicus (Whiskey Grass) and smaller populations of
 Eragrostis curvula (African Lovegrass) were present and excluded all other species.
 Weed cover was generally low with weed control providing good on-going results.
- Increasing colonisation by native grasses with cover increasing annually in most areas, including where exotic grasses have been controlled.
- Vegetation was dominated by Acacia species, many of which are senescent or in some sections mixed native vegetation that is not representative of the local native plant communities. Senescent Acacias becoming less common.
- Good species diversity including target species of nearby remnant vegetation; however, many species had a low abundance.

• All species exhibited signs of good reproduction potential including the threatened species, Persoonia bargoensis and Grevillea parviflora subsp. parviflora (Smallflower Grevillea).

Characteristics of sections revegetated in 2007 (Stage 8):

- originally planted with pasture species as a stabiliser, and was still dominated by exotic grasses in 2016;
- trial of reseeding using the soil amelioration product OGM proved not suitable for the REA;
- very limited cover by native species, both target and non-target;
- scattered patches of native grasses with good cover prior to 2017;
- revegetation and rehabilitation measures were ceased in 2023 with area stripped and re-emplaced;
- Stage was re-capped with topsoil and seeded in September 2023.

Characteristics of sections revegetated post 2010 (Stages 12a, 14 & 16 and No.2 Shaft 11KV Power corridor) are:

- generally good germination rates on level areas with species from all strata represented;
- germination more variable on slopes but still adequate;
- growth rates moderate to very good; and
- limited weed populations.

3.2 Monitoring Results in 2024

Erosion Controls

Erosion control structures, which were implemented in 2019, remain in good condition and no major erosion was recorded along the slopes of the REA. An area in Stage 1, where seepage affected vegetation growth, was rehabilitated with the ripping of the soil surface and mulching in 2018. This area continues to be in a good condition with no seepage evident in 2024. Nearby the seepage area, minor erosion has been recorded, this is shown on the boundary of Stage 1 in **Figure 2** below. Erosion has also been identified in Stage 9 on an access road from the Haul Road and in two (2) areas in Stage 17 (see **Figure 2**).

This should continue to be monitored and minor works required to rectify the erosion if required.

Grass Trials

Monitoring of grass trials was undertaken as part of the 2024 works. The fencing around most of the grass trials has been damaged by wildlife and will need to be remediated.

During 2024, weed coverage has decreased in Trial H and still remains the highest in grass cover when compared with all the other Trials. Trial E and F had the least grass coverage however good diversity in emerging seedling species. Trials A, B and C had good grass coverage with less species diversity. Low weed presence was noted for all trails during 2024 inspections.

There was an overall pattern of reduced cover and abundance of exotic species.

This decrease in overall vegetative cover and species diversity may be a result of slightly drier and warmer than average temperatures.

Reference and Permanent Plot Monitoring

The reference plots and permanent monitoring plots which were burnt by fire in 2019 have recovered well and have a diversity and abundance of species similar to those species within the REA. There is continued evidence of nutrient recycling with termite mounds, ants and scats noted in those burnt plots. Litter cover has stabilised in these plots with grass, leaf litter and twigs recorded in all plots. Plot monitoring data is available in Appendix A.

Most reference and permanent monitoring plots recorded no major changes in vegetation quality and structure overall since 2023.

Overall, weed cover was low overall but has slightly increased or remained at closure criteria levels in some areas of the REA.

Additional characteristics and changes that were noted within the required monitoring plots include:

- overall good health recorded in canopy species, especially Allocasuarina littoralis (Black She-oak) which had many healthy juveniles;
- native species richness has increased across the REA and within the reference plots since 2023;
- structural complexity of the monitoring plots is continuing to develop, though does
 yet not meet closure criteria with many areas still lacking adequate canopy and
 ground cover;
- threatened flora species Persoonia bargoensis (Bargo geebung) was noted in all Stages of the REA and Grevillea parviflora subsp. parviflora (Small-flower Grevillea) was noted in Stage 6;

- biological nutrient cycling was recorded across the REA, including the presence of decomposing vegetation, lichens, termites, ants, cicadas, spiders, macropod scats and an Pseudonaja Textilis (Eastern Brown Snake);
- rabbit herbivory impact low, but evident in some areas; herbivory by native macropods was also present, particularly in Stages 3, 4 and 5;
- remnants of plastic tree guard waste was noted in Stages 3, 4 and 5;
- overall erosion control adequate.

Table 1 provides further details of the monitoring results from 2024 in comparison with results from earlier years and recommendations.

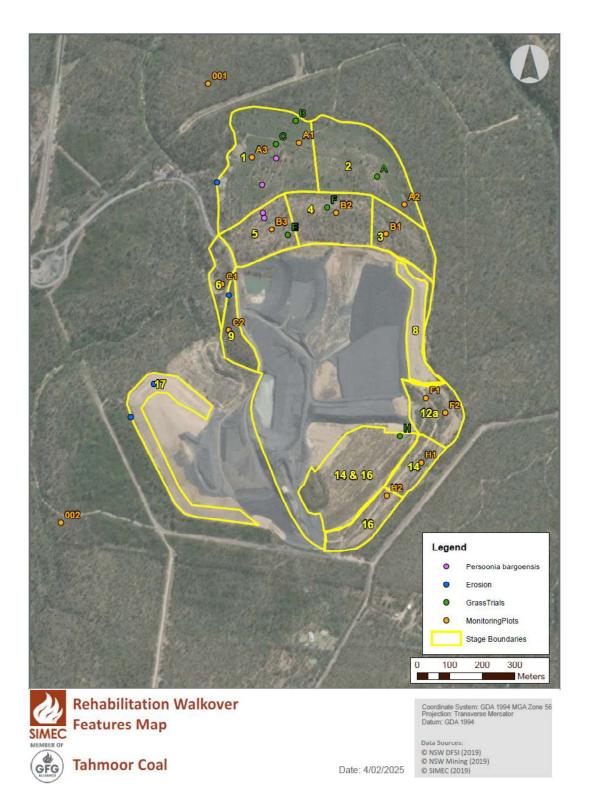


Figure 2 Rehabilitation Walkover Features Identified

Table 1: Key Monitoring Results

Key Characteristics	2023 Results – Permanent Plot Surveys and Walkover Surveys	2024 Results	Recommendations
Soil Profile development	Soil profile continues to develop across all areas of the REA and litter cover has generally improved or remained consistent across all monitoring plots in 2023.	Soil profile continues to develop across the REA. Biological nutrient cycling was recorded across the REA, including the presence of decomposing vegetation, lichens, termites, ants, cicadas, spiders, macropod scats and an Pseudonaja Textilis (Eastern Brown Snake).	Continue to monitor soil profile.
Evidence of Erosion	Evidence of erosion is present within the lower stages of 12a and 14 between the edge of the REA and the existing fence line to the east.	Minor erosion noted in drainage way in lower stages of 12a and 14. Has been infilled with ballast and branches.	Continue to monitor for minor gully erosion and repair with minor works such as infilling with logs and branches.
Native plant species diversity	Native species diversity of canopy, shrubs and grasses is generally consistent across the REA and many of the target species within the adjacent bushland have also colonised within the REA.	Structural complexity of the monitoring plots is continuing to develop, though does yet not meet closure criteria with many areas still lacking adequate canopy and ground cover	Maintain weed control program with attention to avoiding off-target damage to native species.
Native plant cover (overstorey,	Native vegetation cover is stable within Stages 1 to 5 within the REA. Native cover has increased within	Native species richness has increased across the REA	Consider undertaking more native grass trials within the upper stages of 14 and 16.

Tahmoor Coal Pty Ltd

Rehabilitation Monitoring 2024

midstorey, groundcover)	Stage 12a and the lower sections of Stage 14 and 16. Whilst there is cover of scramblers and shrubs continuing to develop within the upper stages of 14 and 16, the overall cover of native grasses is generally low.	and within the reference plots since 2023.	
Native plant growth rates and regeneration	The growth rate in canopy species remains consistent and small increases recorded in all plots across the REA in 2023.	Overall good health recorded in canopy species, especially Allocasuarina littoralis (Black She-oak) which had many healthy juveniles. Second generation Eucalyptus spp. and Acacia spp. seedlings were observed in in most areas, although often in low abundance.	Į.
Threatened Flora	Stable populations of Grevillea parviflora subsp. parviflora and Persoonia bargoensis in Stages 6 and 9. Stable populations of Persoonia bargoensis where it has not been recorded previously across Stage 3 and 4.	Threatened flora species Persoonia bargoensis (Bargo geebung) was noted in all Stages of the REA and Grevillea parviflora subsp. parviflora (Small-flower Grevillea) was noted in Stage 6.	Continue to monitor threatened species populations. Weed control in the vicinity of these species to be carried out by hand.
Weed occurrences and cover	Gomphocarpus fruticosus not recorded across REA. Cenchrus setaceus not recorded across REA. New exotic population of	Weed cover is low overall but has increased slightly or remained at closure criteria threshold levels in some areas of the REA; primarily due to Eragrostis curvula	Increase weed monitoring and weed control program overall, targeting key areas of new weed infestations.

Tahmoor Coal Pty Ltd

Rehabilitation Monitoring 2024

	Cenchrus longisetus (Fox-tail Grass) noted in isolated areas within the	(African lovegrass) cover in Stage 12a and Stages 14 and	Take care to avoid off-target species during weed control
	REA within Stage 2, Stage 3 and Stage 5.	16.	works.
Non-local native	It was noted that significant control	Exotic grasses, herbaceous	Continue to control the
species	works have been undertaken within	weeds and woody weed,	spread of Leptospermum
	the REA for Acacia saligna. In	Acacia saligna (Golden	laevigatum by controlling
	particular many areas where this	wattle), still require ongoing	seedlings outside stages 1
	species was present within Stages 2	monitoring and treatment in	and 2.
	and 3 have been treated.	some areas	Maintain monitoring for
			Acacia saligna and control
			opportunistically during
			weed control activities.
Feral fauna	No rabbits noted during field survey,	Rabbit herbivory impact low,	Rabbit monitoring to
	however it is likely	but evident in some areas;	continue and conduct a
	that a population remains in the	herbivory by native	control programme in
	area.	macropods was also	conjunction with
		present, particularly in	neighbouring properties if
		Stages 3, 4 and 5	required. Consultation by
			Tahmoor Coal with Local
			Land Services advisable.

14

Appendix A Mine Closure Domain 3 - Permanent Monitoring Sites

Contents

Appendix A	1
Mine Closure Domain 3- Permanent Monitoring Sites	1
1. Introduction	
2. Domain 3 – Refuse Emplacement Area	7
2.1 Monitoring methodology	7
2.2 Monitoring results	
References	10
A1 Domain 3 – Summary tables of plot monitoring results	11
A2 Species lists	31
A3 Summary of rehabilitation progress	37
A4 Field data sheets	48
List of Figures	
Figure 1: Mine closure domains 1-6	5
Figure 2: Stage boundaries within the REA and monitoring plots	ε
Figure 3: Reference plot 001 in 2023 and 2024	12
Figure 4: Reference plot 002 in 2023 and 2024	13
Figure 5: Stages 1 and 2 plot A1 in 2023 and 2024	15
Figure 6: Stages 1 and 2 Plot A2 in 2023 and 2024	16
Figure 7: Stages 1 and 2 Plot A3 in 2023 and 2024	17
Figure 8: Stages 3, 4 and 5 plot B1 in 2023 and 2024	19
Figure 9: Stages 3, 4 and 5 plot B2 2023 and 2024	20
Figure 10: plot B3 in 2023 and 2024	21
Figure 11: Stages 6 and 9 plot C1 in 2023 and 2024	23
Figure 12: Stages 6 and 9 plot C2 in 2023 and 2024	24
Figure 13: Stage 12A plot F1 in 2023 and 2024	26
Figure 14: Stage 12A plot F2 in 2023 and 2024	27
Figure 15: Stages 14 and 16 plot H1 in 2023 and 2024	29
Figure 16: Stages 14 and 16 plot H2 in 2023 and 2024	30
List of Tables	
Table 1: Monitoring procedures and measurements	
Table 2: Characteristics of the reference monitoring plots	
Table 3: Characteristics of monitoring plots A1, A2 and A3 in Stages 1 and 2	14

Table 4: Characteristics of plots B1, B2 and B3 in Stages 3, 4 and 5	18
Table 5: Characteristics of plots C1 and C2 in Stages 6 and 9	22
Table 6: Characteristics of plots F1 and F2 in stage 12a lower slopes	25
Table 7: Characteristics of plots H1 and H2 in stages 14 and 16 lower benches	28
Table 8: Rehabilitation progress in Stages 1 and 2 of CD 3	38
Table 9: Rehabilitation progress in Stages 3, 4 and 5 of CD 3	40
Table 10: Rehabilitation progress in Stages 6 and 9 of CD 3	42
Table 11: Rehabilitation progress in Stage 12A of CD 3	44
Table 12: Rehabilitation progress in Stages 14 and 16 of CD 3	46

Abbreviations

Abbreviation	Description
CD	Closure Domain
DBH	Diameter at breast height
ELA	Eco Logical Australia Pty Ltd
МОР	Tahmoor Colliery Mine Operations Plan 2012 - 2019 (XCN 2012)
PCT	Plant Community Type
REA	Refuse Emplacement Area
sp.	species
spp.	species (plural)
SVTM	State Vegetation Type Mapping

© ECO LOGICAL AUSTRALIA PTY LTD 3

1. Introduction

Eco Logical Australia Pty Ltd (ELA) was commissioned by Tahmoor Coal Pty Ltd. (Tahmoor Coal) to assess permanent monitoring sites in rehabilitated areas of Mine Closure Domain 3 within Tahmoor Coal. The location of all mine closure domains at Tahmoor Coal are shown in Figure 1.

Development of the Tahmoor Coal site began in 1975. The Refuse Emplacement Area (REA) was established during the 1980s with long wall mining beginning in 1986. Sections of the REA have been progressively rehabilitated with native vegetation over the past 20 years, with additional sections rehabilitated as each stage of the REA has been constructed. The majority of the permanent monitoring sites are located within Domain 3 across Stages 1-16 of the REA. Permanent monitoring sites within the current active areas of the mine (Domains 1, 2, 4 and 5) have not been assessed in this report.

Figure 2 provides the location of both the rehabilitation stages within the REA and the permanent monitoring sites within each stage. Annual monitoring of permanent sites in the rehabilitation areas of the REA provides information regarding improvement and other changes in both vegetation growth and colonisation. In addition, indication of the success of the rehabilitation is gained through comparison of both vegetation structure and composition within the reference sites and surrounding vegetation communities.

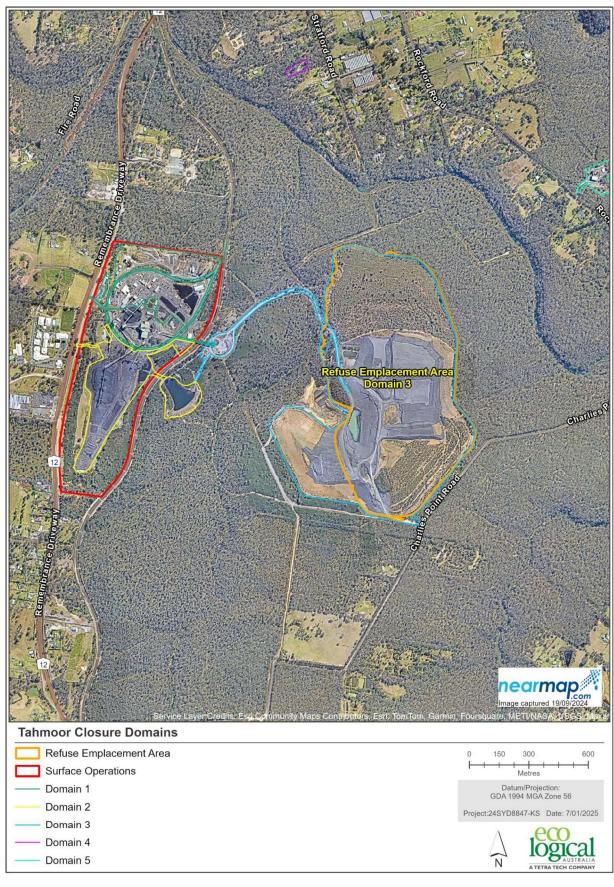


Figure 1: Mine closure domains 1-5

Figure 2: Stage boundaries within the REA and monitoring plots

2. Domain 3 - Refuse Emplacement Area

2.1 Monitoring methodology

Permanent plot monitoring was undertaken in accordance with Tahmoor Coal's Rehabilitation Management Plan - TAH-HSEC-402 and Rehabilitation Strategy TAH-HSEC-401. Monitoring methodology is based on the 'plot-based sampling of vegetation' as described in *Rehabilitation Management Plan (TAH-HSEC-402)*.

Two monitoring plots, within each of the following REA stages or areas were established prior to 2014, with an additional plot established within Stages 1 and 2, and one within Stages 3, 4 and 5 in 2015 to conform to the new guidelines for monitoring at that time. Plot identifiers are as below.

- Reference sites within undisturbed native vegetation plots 001 and 002
- Stages 1 and 2 plots A1, A2 and A3
- Stages 3, 4 and 5 plots B1, B2 and B3
- Stages 6 and 9 plots C1 and C2
- Stage 12 (lower benches) (12A) plots F1 and F2
- Stages 14 and 16 (lower benches) plots H1 and H2.

Stage 8 does not have permanent monitoring plots located within it yet, due to the more recent timing of revegetation installation. Stage 7, Stage 10 and Stage 12B monitoring plots have been removed due to earthworks in these areas.

The locations of all permanent monitoring plots are shown in Figure 2.

Assessment of the permanent monitoring plots within the REA was carried out over four days on 11-12 November, 21 November and 16 December 2024 by ELA ecologists, Claire Plunkett, Cornelia Ersson and Tim Finter.

The procedures and measurements undertaken at each of the permanent monitoring sites are outlined in Table 1.

Further to the plot-based sampling, additional elements which include soil stability, biological nutrient cycling, refuse material on the surface and fauna habitat, were assessed within the plots.

Field data was collected using a standardised field template and later converted to a digital format. Plants were identified using field guides (Fairley and Moore 1995; Robinson 2003) and the PlantNet database (Royal Botanic Gardens Trust 2013).

To identify target species, native species recorded in the monitoring plots were cross-referenced against species that have been identified in the reference plots, as well as species which are predicted to occur in the surrounding Plant Community Types (PCT) as mapped in the State Vegetation Type Mapping (DPE 2024).

Table 1: Monitoring procedures and measurements

Plot descriptor	Procedure and/or measurement
General description	 Global Positioning System (GPS) location. Describe the vegetation in general terms.
Reproductive potential	Assessment of reproductive potential of the existing vegetation and soil disturbance.
2 m x 2 m quadrats	 Stem count the number of plants of all native and exotic species, excluding grass. Measure live vegetation cover for understorey and grasses (separately) using a line intercept method. Record presence of ground cover (litter, logs, rocks etc.).
20 m x 10 m plots	 Steam count, by species, all trees >1.6 m tall. Tag and measure Diameter Breast Height (DBH) of trees >1.6 m tall, to a maximum of 10 for any one species. Record canopy cover over 20 m centreline of the 20x 10 m plots where trees are tall enough. Subjectively describe tree health, by species if relevant, noting signs of drought stress, nutrient deficiencies, disease and severe insect attack. Where health problems are noted, record the percentage of unhealthy trees. Record any new plant species which are not present in the smaller plots, including all weeds.
50 m erosion transect	 Record the location, number and dimension of all gullies >30 cm wide and/or 30 cm deep. Record rill and slope-wash features.
Rehabilitation in general	 When traversing between monitoring plots, note the presence of species of interest not previously recorded (e.g., key functional or structural species, protected species, noxious/priority weeds), as well as obvious problems including any extensive bare areas (e.g., those greater than 0.1 hectare).
Photographic record	 For each plot, a photograph was taken at each end of the plot, along the centreline looking in. A star picket with identifier is installed as a permanent photo monitoring point.

2.2 Monitoring results

Tabulated summaries of the results collected for each monitoring plot and collated for each rehabilitation stage are provided within **Appendix A1**, along with photographs of each monitoring plot. Collated species lists for each stage are listed in **Appendix A2**.

Other than expected growth, there were no major changes in vegetation quality and structure overall since 2023. The following provides a broad overview of the characteristics and variations that were recorded:

- overall good health recorded in canopy species, especially *Allocasuarina littoralis* (Black Sheoak) which had many healthy juveniles
 - o some dieback noted in *Eucalyptus* spp. in Stage 2 and Stages 3, 4 and 5
 - o poor health noted in *Acacia* spp. in Stage 12a and Stages 14 and 16, in part due to boring insect damage
 - o generally, there was a small but consistent increase in the diameter of living canopy species
 - many young canopy trees have grown to more than 1.6 m; these have been tagged for ongoing growth and health monitoring

- o second generation *Eucalyptus* spp. and *Acacia* spp. seedlings were observed in in most areas, although often in low abundance
- native species richness has increased across the REA and within the reference plots since 2023
 - colonisation by second generation local native shrubs, forbs, grasses and sedges was noted across the REA and most species are consistent with those in the control monitoring plots or with those predicted to occur in adjacent PCTs, based on SVTM (DPE 2024).
- structural complexity of the monitoring plots is continuing to develop, though does yet not meet closure criteria with many areas still lacking adequate canopy and ground cover
 - o native grass cover experienced a moderate decrease across the REA and the reference plots; particularly evident in the reference plots, Stages 1 and 2, Stages 6 and 9 and Stage 12a.
 - o understorey cover experienced a moderate decrease overall across the REA, though not significantly in the reference plots
- weed cover is low overall but has increased slightly or remained at closure criteria threshold levels in some areas of the REA; primarily due to *Eragrostis curvula* (African lovegrass) cover in Stage 12a and Stages 14 and 16
 - o weed cover in Stages 3, 4 and 5 decreased to below 10% (closure criteria threshold)
 - exotic grasses, herbaceous weeds and woody weed, Acacia saligna (Golden wattle), still require ongoing monitoring and treatment in some areas
- threatened flora species *Persoonia bargoensis* (Bargo geebung) was noted in all Stages of the REA and *Grevillea parviflora* subsp. *parviflora* (Small-flower Grevillea) was noted in Stage 6
- biological nutrient cycling was recorded across the REA, including the presence of decomposing vegetation, lichens, termites, ants, cicadas, spiders, macropod scats and an *Pseudonaja Textilis* (Eastern Brown Snake)
- rabbit herbivory impact low, but evident in some areas; herbivory by native macropods was also present, particularly in Stages 3, 4 and 5
- remnants of plastic tree guard waste was noted in Stages 3, 4 and 5
- overall erosion control adequate.

A series of rehabilitation closure criteria have been developed in line with Tahmoor Coal Pty Ltd.'s rehabilitation indicators and completion criteria, contained within Section 6 of the Rehabilitation Strategy TAH-HSEC-401. Rehabilitation progress within each of the monitored sections of the REA has been evaluated in line with these criteria, and these evaluations are summarised in **Appendix A3**. These evaluations include assessment of the progress of revegetation within each development stage towards a self-sustaining native vegetation community.

The recorded field data sheets from monitoring in 2024 are provided in Appendix A4.

References

Eco Logical Australia 2018. *Tahmoor Colliery Rehabilitation Monitoring 2018*. Prepared for Tahmoor Coal Pty Ltd..

Fairley, A. and Moore, P. 1995. Native Plants of the Sydney District. Kangaroo Press, Kenthurst, NSW.

Department of Planning and Environment (DPE) 2024. *NSW State Vegetation Type Map* Version C2.0.M2.1. Released November 2024. Department of Planning and Environment.

Glencore Coal Assets Australia (GCAA) 2015. CAA HSEC GDL 0005 11.16 Annual Rehabilitation and Land Management and Planning

Glencore Coal Assets Australia (GCAA) 2015. CAA HSEC PRO 0010 11.16 Completion Criteria and Rehabilitation Monitoring

Global Soils Systems 2005. *Revegetation Establishment Report Tahmoor Colliery March 2005*. Report to Tahmoor Colliery. July 2005

GSS Environmental 2006. Statement of Environmental Effects for the Upgrade of existing 11kV Power Cable, Tahmoor Colliery. Prepared for Tahmoor Coal Pty Ltd.

Robinson L. 2003. Field Guide to the Native Plants of Sydney. 3rd Ed. Kangaroo Press. Pymble NSW.

Tahmoor Coal Pty Ltd. 2021. Tahmoor Coal Pty Ltd. Mine Operations Plan Tahmoor Coking Coal Operations – SIMEC Mining 2020-2024

Tahmoor Mine 1995. Refuse Emplacement Area Management, Rehabilitation and Water Monitoring Plan.

The Royal Botanic Gardens and Domain Trust. 2013. *PlantNET - The Plant Information Network System of The Royal Botanic Gardens and Domain Trust, Sydney, Australia* (version 2.0) http://plantnet.rbgsyd.nsw.gov.au accessed November 2024

Xstrata Coal NSW 2007. XCN-HSEC STD5.13 Closure Criteria Development and Rehabilitation Monitoring

Xstrata Coal NSW 2012 Tahmoor Colliery Mine Operations Plan 2012 - 2019

Xstrata Coal NSW, 2011. XCN SD ANN 0039 10.2 Completion Criteria Development and Rehabilitation Monitoring.

A1 Domain 3 – Summary tables of plot monitoring results

The following tables and figures provide a summary of the monitoring results in 2024 for the permanent monitoring plots in the REA.

Table 2: Characteristics of the reference monitoring plots

Characteristic -	Plot number		Comment	
Characteristic -	001	002	(including comparison with 2023 results)	
Over-storey cover (%)	10	3	001 – small increase (5%)	
			002 – small increase (1%)	
Understorey live cover (%) ^	80	61	001 – small increase (4%)	
			002 – small decrease (0.25%)	
No. of native species	5	5		
Native species no. change since 2023	+:	10		
No. of target species	N,	/A		
Native grass cover (%) ^	22	16.4	001 – decrease (18%)	
			002 – decrease (13%)	
Exotic grass cover (%) ^	0	0	None in 2 x 2m plots	
Weed density (%)	<0.1	0	001 – one exotic plant observed	
			002 – none (no change)	
Reproductive potential**	b, f	b, f	buds and flowers noted in shrubs and grasses, limited in canopy species	
2 nd generation natives	٧	٧	New seedlings of canopy spp. observed	
Tree DBH increase (cm)***	1.6 - 2.2	1-1.2	Small but stable increase since 2023	
			001 – average increase 1.9cm 002 – average increase 1.1cm (many new trees tagged in 2024)	
Tree health	Good	Good	Abundant epicormic growth and tree recovery	
Litter cover (%) ^	32	52	001 – increase (8%)	
			002 – large increase (34%)	
Litter	sandy soils, leaf litter, twigs, fallen branches	sandy soils, leaf litter, twigs, fallen branches	Results are consistent with 2023	
Substrate material	0	0		
Nutrient recycling	٧	٧	Ants, spiders, herbivore scats, leaf litter	
Erosion	no erosion	no erosion		

[^] Mean of five quadrats

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring

Figure 3: Reference plot 001 in 2023 and 2024

Figure 4: Reference plot 002 in 2023 and 2024

Table 3: Characteristics of monitoring plots A1, A2 and A3 in Stages 1 and 2

Establishment – 1993 and 1996		Plot number		Comment (including comparison with 2023
Characteristic	A1	A2	А3	results)
Over-storey cover (%)	0	1	0	A1 and A3 - no canopy trees A2 – small increase (1%)
Understorey live cover (%) ^	50	49	31	A1 – decrease (8%) A2 – increase (10%) A3 – decrease (25%)
No. of native species		43		
Native species no. change since 2023		+7		
No. of target species*		42		
Native grass cover (%) ^	4	0.6	3.6	A1 – decrease (15%) A2 – decrease (0.2%) A3 – decrease (2%)
Exotic grass cover (%) ^	20	11.2	0.2	A1 – increase (5%) A2 – decrease (1.6%) A3 – increase (0.2%)
Weed density (%)	12	1	<1	A1 and A2 – small decrease (1-3%) A3 - very small increase (<1%)
Reproductive potential **	b, f	b, f	b, f	buds and flowers noted in shrubs and grasses, limited in canopy species
2 nd generation natives	٧	٧	٧	
Tree DBH increase (cm) ***	1-1.6	2 – 4.9	1	Small increase in tree DBH overall A1 – average increase 1.2cm A2 – average increase 3.1cm A3 – average increase 1cm Many new trees were tagged in all plots in 2024.
Tree health	Good	Moderate- Good	Good	A1 and A3 - no <i>Eucalyptus</i> spp. A2 – one <i>Eucalyptus globoidea</i> died since 2023
Litter cover (%) ^	19	19	50	A1 – small increase (3%) A2 – no change A3 – large increase (26%)
Litter	Twigs and grass litter	Twig and grass litter, stones	Twig and leaf litter	Results are consistent with 2023.
Substrate material size (cm)	≤ 20	≤ 20	none observed	
Nutrient recycling	٧	٧	٧	Ants, termites, cicadas, leaf litter, herbivore scats, lichens
Soil crusting	no	no	no	
Erosion	very little evidence of rill lines, no erosion	no erosion	rill lines slightly evident, no erosion	No change since 2023

[^] Mean of five quadrats

^{*} target species identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring

Figure 5: Stages 1 and 2 plot A1 in 2023 and 2024

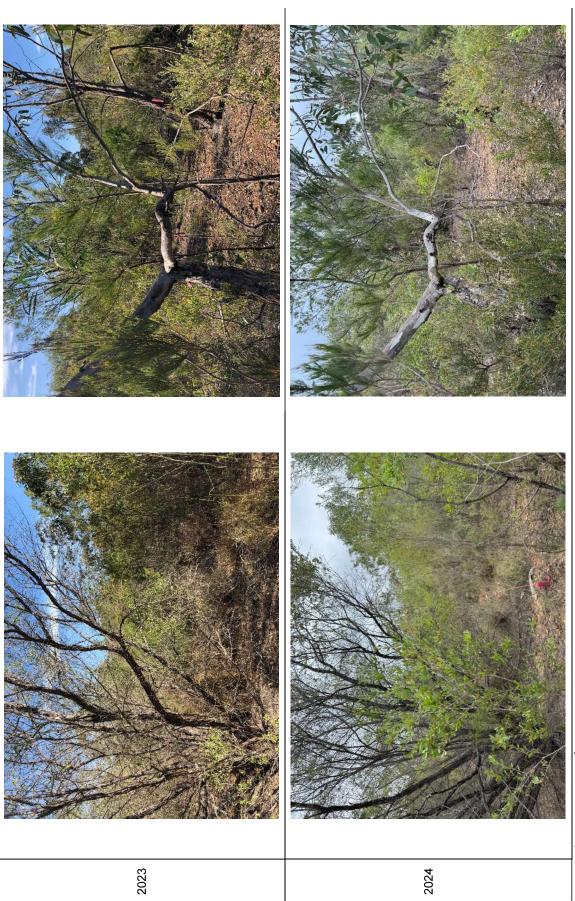


Figure 6: Stages 1 and 2 Plot A2 in 2023 and 2024

Figure 7: Stages 1 and 2 Plot A3 in 2023 and 2024

Table 4: Characteristics of plots B1, B2 and B3 in Stages 3, 4 and 5

Chavastavistia		Plot number	Comment (including comparison	
Characteristic	B1	B2	В3	with 2023 results)
Over-storey cover (%)	25	12	2	B1, B2, B3 – small increase (2-5%)
Understorey live cover (%) ^	29	37.6	24	B1 – increase (5%) B2 – increase (28.6%) B3 – decrease (6%)
No. of native species		51		
Native species change since 2023		+13		
No. of target species*		48		
Native grass cover (%) ^	20	0.8	1	B1 – small decrease (1%) B2 – decrease (1.8%) B3 – decrease (6.4%)
Exotic grass cover (%) ^	0.6	0.6	0.4	B1 – small decrease (0.6%) B2 – small increase (0.5%) B3 – small increase (0.4%)
Weed density (%)	0	1	3	B1, B2, B3 – small decrease (0.6-9%)
Reproductive potential **	b, f	b, f	b, f	
2nd generation natives	V	٧	٧	buds and flowers noted in shrubs and grasses, limited in canopy species
Tree DBH increase (cm)***	1.2 – 3.3	0.6 - 6	0.6 – 2.4	Small increase in tree DBH overall B1 – average increase 2.1cm B2 – average increase 2.3cm B3 – average increase 1.3cm
Tree health	moderate	poor- moderate	good	B1 and B2 – many <i>Eucalyptus</i> spp. poor, but other spp. healthy B3 – no change
Litter cover (%) ^	86	96.8	17.4	B1, B2, B3 – small increase (8-3.8%)
Litter	twig and leaf litter, sandstone rocks	twig and leaf litter	twig and leaf litter, termite mound, rocks	Results are consistent with 2023
Substrate material size (cm)	≤ 20	≤ 20	≤ 20	No change
Nutrient recycling	٧	V	٧	Ants, termites, cicadas, leaf litter, herbivore scats
Soil crusting	no	no	no	
Erosion	no erosion	no erosion	no erosion	No change since 2023

[^] Mean of five quadrats

^{*} target species identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring

Figure 8: Stages 3, 4 and 5 plot B1 in 2023 and 2024

Figure 9: Stages 3, 4 and 5 plot B2 2023 and 2024

Figure 10: plot B3 in 2023 and 2024

Table 5: Characteristics of plots C1 and C2 in Stages 6 and 9

Chamatairi	Plot number		Comment	
Characteristic	C1	C2	(including comparison with 2023 results)	
Over-storey cover (%)	0	50	C1 – decrease (5%) only tree over centreline has fallen since 2023 C2 – large increase (40%)	
Understorey live cover (%) ^	41	42.2	C1 – moderate decrease (26%) C2 – increase (14.4%)	
No. of native species	4	.0		
Native species change since 2023	+	8		
No. of target species*	3	9		
Native grasses cover (%) ^	14.4	1.4	C1 – large decrease (36.6%) C2 – moderate decrease (18%)	
Exotic grass cover (%) ^	0.2	0	C1 – small increase (0.2%) C2 – no change	
Weed density (%)	1	0	C1, C2 – no change	
Reproductive potential**	b, f	b, f	buds and flowers noted in shrubs and grasses, limited in canopy species	
2nd generation natives	٧	٧		
Tree DBH increase (cm)***	0.6 - 0.9	0.7 – 4.8	Small increase in DBH overall C1 – average increase 0.8cm C2 – average increase 2.8cm Many new trees were tagged in 2024.	
Tree health	Good	Good	C1 and C2 - regenerating understorey of Acacia sp. and Allocasuarina sp.	
Litter cover (%) ^	68	84	C1, C2 – large increase (33-39%)	
Litter	twig and leaf litter, woody debris, rocks	twig and leaf litter, woody debris, rocks	Results are consistent with 2023	
Substrate material size (cm)	≤ 20	none		
Nutrient recycling	V	٧	Ants, termites, cicadas, leaf litter, lichens herbivore scats	
Soil crusting	no	no		
Erosion	no erosion	no erosion	No change since 2023	

[^] Mean of five quadrats

^{*} target species identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring

Figure 11: Stages 6 and 9 plot C1 in 2023 and 2024

Figure 12: Stages 6 and 9 plot C2 in 2023 and 2024

Table 6: Characteristics of plots F1 and F2 in stage 12a lower slopes

	Plot number		Comment
Characteristic	F1	F2	(including comparison with 2023 results)
Over-storey cover (%)	35	5	F1 – small increase (5%) F2 – small increase (2%)
Understorey live cover (%) ^	65	44	F1 – moderate increase (23%) F2 – small increase (9%)
No. of native species		48	
Native species change since 2023		+8	
No. of target species*		45	
Native grasses cover (%) ^	14	13	F1 – decrease (8.4%) F2 – decrease (13.6%)
Exotic grass cover (%) ^	9	0.4	F1 and F2 – small decrease (0.6-6%)
Weed density (%)	10	5	F1 – small increase (8%) F2 – no change
Reproductive potential**	b, f	b, f	buds and flowers noted in shrubs and grasses, limited in canopy species
2 nd generation natives	٧	٧	
Tree DBH increase (cm)***	0-2.6	0 – 1.8	Small increase in tree DBH overall
			F1 – average increase 1.3cm
			F2 – average increase 1.4cm Many new trees were tagged in 2024.
Tree health	Good	Moderate-Good	Overall good condition across both plots, aside from a few poor <i>Acacia decurrens</i> and <i>Acacia</i> sp. in both plots. Eucalyptus spp. in good condition across both
			plots, especially <i>Eucalyptus punctata</i> in F2.
Litter cover (%) ^	73	43	F1 – increase (13%) F2 – small increase (1%)
Litter	leaf litter, mulch, sandstone pebbles, twigs	leaf litter, mulch, sandstone pebbles, twigs	Results are consistent with 2023
Substrate material size (cm)	≤ 20	≤ 20	F1 and F2- (1-2%)
Nutrient recycling	٧	٧	Ants, woody debris, leaf litter, herbivore scats
			F1 - Eastern brown snake observed
Soil crusting	no	no	
Erosion	minor erosion	no erosion	No change since 2023

[^] Mean of five quadrats

^{*} target species identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring



Figure 13: Stage 12A plot F1 in 2023 and 2024

Figure 14: Stage 12A plot F2 in 2023 and 2024

Table 7: Characteristics of plots H1 and H2 in stages 14 and 16 lower benches

Established in 2012	Plot number			
Characteristic	H1	H2	2023 results)	
Over-storey cover (%)	7	15	H1 – small increase (2%) H2 – no change	
Understorey live cover (%) ^	32	16	H1 – increase (20%) H2 – small decrease (4%)	
No. of native species	3	33		
Native species change since 2023	+	-9		
No. of target species*	3	31		
Native grasses cover (%) ^	4.2	4.2	H1 – small decrease (0.6%) H2 – small decrease (3%)	
Exotic grass cover (%) ^	0.2	7	H1, H2 – small decrease (0.2-3%)	
Weed density (%)	10	10	No change	
Reproductive potential**	b, f	b, f	buds and flowers noted in shrubs and grasses, limited in canopy species	
2 nd generation natives	٧	٧		
Tree DBH increase***	0.5 - 3.6	0.5 - 3.6	Small increase in tree DBH overall	
			H1 – average increase 1.4cm H2 – average increase 1.7cm	
			Several new trees were tagged in 2024.	
Tree health	Good	Moderate -Good	F1 - Some dieback of <i>Acacia</i> spp. due to boring insects, but otherwise healthy F2 – Good overall with one prone, but living, <i>Acacia decurrens</i>	
Litter cover (%) ^	55	30	H1 – decrease (11%) H2 – small increase (4%)	
Litter	leaf litter, sandstone pebbles, mulch	twigs, grass litter, sandstone pebbles		
Substrate material size (cm)	≤ 20	≤ 20	1% coverage, scattered	
Nutrient recycling	٧	٧	Ants, cicadas, leaf litter, herbivore scats	
soil crusting	no	no		
Erosion	no gully erosion evident, rill lines evident	minor gully erosion, deep rill lines evident	No change	

[^] Mean of five quadrats

^{*} target species identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

^{**} reproductive potential – b=buds/flowers, f=fruit, fg= grasses only

^{***} range of increase since 2023 monitoring

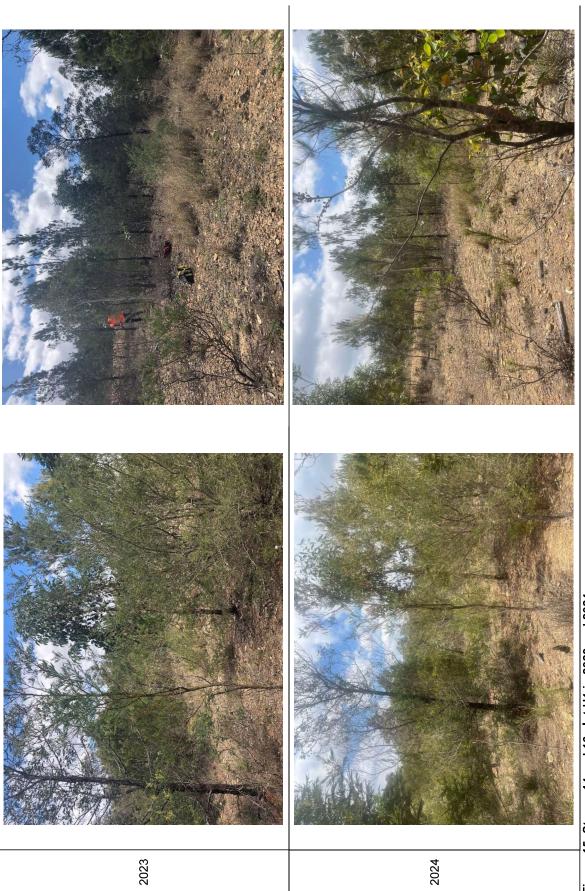


Figure 15: Stages 14 and 16 plot H1 in 2023 and 2024

A2 Species lists

Acacia linifolia	Laxmannia gracilis
Acacia longifolia	Leptospermum juniperinum
Acacia parramattensis	Leptospermum trinervium
Acacia sp. seedling	Lindsea microphylla
Acacia terminalis	Lomandra multiflora
Allocasuarina littoralis	Lomandra obliqua
Anisopogon avenaceus	Microlaena stipoides var. stipoides
Aristida sp.	Mirbelia rubiifolia
Austrostipa scabra	Patersonia sericea
Austrostipa sp.	Persoonia bargoensis [±]
Billardiera scandens	Persoonia linearis
Brachyloma daphnoides	Phyllanthus hirtellus
Cassytha glabella	Pimelea linifolia
Cassytha pubescens	Platysace linearifolia
Cyathochaeta diandra	Poa sp.
Dianella revoluta	Ptilothrix deusta
Dillwynia sp.	Pultenaea sp.
Entolasia stricta	Scaevola ramosissima
Eriostemon australasius	Schoenus ericetorum
Eucalyptus globoidea	Schoenus sp.
Eucalyptus piperita	Senecio madagascariensis^
Eucalyptus punctata	Stypandra glauca
Eucalyptus sp. seedling	Tricoryne eliator
Gompholobium glabratum	
Gonocarpus tetragynus	
Goodenia hederacea subsp. hederacea	
Grevillea sphacelata	
Hakea dactyloides	
Hibbertia diffusa	
Hibbertia riparia	
Kunzea ambigua	
Lambertia formosa	

Species recorded within Stages 1 and 2	
Acacia decurrens*	Microtis unifolia*
Acacia falcata*	Mirbelia rubiifolia*
Acacia longifolia*	Opercularia diphylla*
Acacia mearnsii*	Patersonia sericea*
Acacia parramattensis*	Persoonia bargoensis±*
Acacia saligna^	Persoonia levis*
Acacia suaveolens*	Persoonia linearis*
Acacia terminalis*	Pimelea linifolia*
Allocasuarina littoralis*	Pomax umbellata*
Aristida ramosa*	Stypandra glauca*
Astroloma humifusum*	Themeda triandra*
Austrostipa scabra*	
Banksia spinulosa*	
Billardiera scandens*	
Cheilanthes sieberi*	
Coronidium oxylepis*	
Cymbopogon refractus*	
Daviesia acicularis*	
Dianella revoluta*	
Dillwynia sp.*	
Dodenaea triquetra*	
Entolasia stricta*	
Eragrostis brownii*	
Eragrostis curvula^	
Eucalyptus globoidea*	
Grevillea sphacelata*	
Hakea sericea*	
Hypochaeris radicata^	
Kennedia rubicunda*	
Kunzea ambigua*	
Laxmannia gracilis*	
Lepidosperma laterale*	
Leptomeria acida*	
Leptospermum laevigatum	
Lomandra multiflora*	

^{*}identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

 $^{^{\}pm}$ denotes threatened species

[^] denotes exotic species

<u>Stages 3, 4 and 5</u>	
Acacia binervata*	Kennedia rubicunda*
Acacia binervia*	Kunzea ambigua*
Acacia decurrens*	Lagenophora stipitata*
Acacia falcata*	Laxmannia gracilis*
Acacia longifolia*	Lepidosperma laterale*
Acacia mearnsii*	Linum trigynum^
Acacia myrtifolia*	Lomandra multiflora*
Acacia parramattensis*	Micrantheum ericoides*
Acacia suaveolens*	Mirbelia rubiifolia*
Acacia terminalis*	Opercularia diphylla*
Allocasuarina littoralis*	Panicum effusum*
Anisopogon avenaceus*	Paspalum dilatatum^
Aristida ramosa*	Persoonia bargoensis±*
Astroloma humifusum*	Persoonia levis*
Austrostipa scabra*	Persoonia linearis*
Banksia integrifolia	Persoonia pinifolia*
Billardiera scandens*	Phyllanthus hirtellus*
Brachyloma daphnoides*	Pimelea linifolia*
Cenchrus clandestinus^	Poa sp.
Cenchrus setaceus^	Pomax umbellata*
Centaurium erythraea^	Sisymbrium officinale^
Coronidium oxylepis*	Stypandra glauca*
Cynodon dactylon^	Themeda triandra*
Dillwynia sp.*	
Dillwynia sp. 2	
Dodonaea triquetra*	
Entolasia stricta*	
Eragrostis brownii*	
Eucalyptus globoidea*	
Eucalyptus punctata*	
Eucalyptus racemosa*	
Eucalyptus sp. seedling	
Hakea dactyloides*	
Hakea sericea*	

^{*}identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

33

[±]denotes threatened species

[^] denotes exotic species

Stages 6 and 9	
Acacia decurrens*	Lomandra obliqua*
Acacia falcata*	Mirbelia rubiifolia*
Acacia longifolia*	Monotoca scoparia*
Acacia mearnsii*	Opercularia diphylla*
Acacia suaveolens*	Patersonia glabrata*
Allocasuarina littoralis*	Persoonia bargoensis±*
Aristida ramosa*	Persoonia linearis*
Astroloma humifusum*	Phyllanthus hirtellus*
Austrostipa scabra*	Richardia stellaris^
Billardiera scandens*	Sisymbrium officinale^
Callistemon linearis*	Themeda triandra*
Cenchrum clandestinus^	Verbena bonariensis^
Coronidium oxylepis*	
Cyathochaeta diandra*	
Daviesia genistifolia*	
Dianella revoluta*	
Dillwynia sp.*	
Entolasia stricta*	
Eragrostis brownii*	
Eucalyptus globoidea*	
Eucalyptus punctata*	
Eucalyptus sp. seedling	
Gamochaeta sp.^	
Grevillea parviflora subsp. parviflora±*	
Grevillea sphacelata*	
Hakea sericea*	
Hovea linearis*	
Hypochaeris radicata^	
Kunzea ambigua*	
Laxmannia gracilis*	
Lepidosperma laterale*	
Leptospermum polygalifolium*	
Lomandra filiformis*	

^{*}identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

[±]denotes threatened species

[^] denotes exotic species

Stage 12a (lower benches)	
Acacia decurrens*	Kunzea ambigua*
Acacia longifolia*	Laxmannia gracilis*
Acacia myrtifolia*	Lepidosperma laterale*
Acacia rubida*	Leptospermum juniperinum*
Acacia terminalis*	Lobelia purpurascens*
Allocasuarina littoralis*	Lomandra longifolia*
Angophora floribunda*	Lomandra multiflora*
Astroloma humifusum*	Lomandra obliqua*
Austrostipa scabra*	Lysimachia arvensis^
Billardiera scandens*	Melaleuca thymifolia*
Bossiaea heterophylla*	Mirbelia rubiifolia*
Bossiaea prostrata*	Panicum effusum*
Centella asiatica*	Persoonia bargoensis±*
Cheilanthes sieberi*	Persoonia linearis*
Daviesia sp.	Phyllanthus hirtellus*
Daviesia ulicifolia*	Plantago lanceolata^
Dianella revoluta*	Pomax umbellata*
Dichelachne sp.	Pultenaea villosa*
Dodonaea viscosa*	Richardia stellaris^
Entolasia stricta*	Senecio madagascariensis^
Eragrostis brownii*	Themeda triandra*
Eragrostis curvula^	Wahlenbergia gracilis*
Eucalyptus fibrosa*	
Eucalyptus punctata*	
Eucalyptus sp. seedling	
Euchiton japonicus*	
Facelis retus^	
Glycine clandestina*	
Gonocarpus tetragynus*	
Hardenbergia violacea*	
Hibbertia aspera*	
Hydrocotyle laxiflora*	
Hypochaeris radicata^	

^{*}identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

[±]denotes threatened species

[^] denotes exotic species

Stages 14 and 16 (lower benches)	
Acacia decurrens*	Persoonia linearis*
Acacia falcata*	Pomax umbellata*
Acacia longifolia*	Richardia stellaris^
Acacia parramattensis*	Themeda triandra*
Acacia sp. seedling	
Acacia suaveolens*	
Acacia terminalis*	
Allocasuarina littoralis*	
Astroloma humifusum*	
Centaurium erythera^	
Conyza bonariensis^	
Cynodon dactylon^	
Daviesia ulicifolia*	
Dianella revoluta*	
Dodonaea viscosa*	
Entolasia stricta*	
Eragrostis brownii*	
Eragrostis curvula^	
Eucalyptus fibrosa*	
Eucalyptus punctata*	
Eucalyptus sp. seedling	
Euchiton sphaericus*	
Euphorbia sp.	
Glycine clandestina*	
Gonocarpus tetragynus*	
Hardenbergia violacea*	
Hibbertia aspera*	
Hypochaeris radicata^	
Kunzea ambigua*	
Laxmannia gracilis*	
Lepidosperma laterale*	
Lobelia purpurascens*	
Lomandra multiflora*	
Mirbelia rubiifolia*	
Persoonia bargoensis±*	

^{*}identified within reference plots in 2022-24; species known to occur in reference plots before fire; and species in bushland surrounding REA emplacement stages

 $^{^{\}pm}$ denotes threatened species

[^] denotes exotic species

A3 Summary of rehabilitation progress

The following tables provide a summary of rehabilitation progress within each development stage of Domain 3 (REA) with reference to closure criteria contained in the Rehabilitation Strategy.

Table 8: Rehabilitation progress in Stages 1 and 2 of CD 3 with reference to closure criteria contained in the Rehabilitation Strategy

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
Decommissioning	Infrastructure and services will be removed from the REA site	All services related to refuse emplacement activities to be removed from the REA	Yes	Yes	From this Stage of Domain 3
		REA site offices and any other infrastructure to be removed	Yes	Yes	From this Stage of Domain 3
Growth medium development	Apply topsoil for rehabilitation Reduce erosion on slopes, and provide furrows for seed beds	Topsoil placement depth All final landform slopes to be contour ploughed	>200 cm Yes	Yes	
Ecosystem establishment	Establish native bushland rehabilitation	Conduct seeding and/or planting	Yes	Yes – seeding and planting completed	Seeding 1993 Tubestock planting 1996
Ecosystem development	Self-sustaining native bushland rehabilitation (REA Rehabilitation and Water Management Plan)	Presence of weeds in monitoring transects (%)	< 10%	O _N	Weed control and monitoring should continue to ensure cover does not increase across these stages. Continued treatment of Acacia saligna is required.
		Evidence of second- generation flora germination in monitoring transects	Yes	Yes	Good second generation of forbs, grasses and shrubs. Second generation Eucalyptus spp. and Allocasuarina littoralis are also present in low abundance.
		Rehabilitation monitoring transects contain flora species and structural	Yes	No	Stage 2 revegetation includes non-indigenous species

38

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
		characteristics similar to the			(Leptospermum laevigatum)
		desired vegetation			providing high % of cover.
		communities at the			Colonisation by target species
		reference sites			in both stages continues to
					increase, however structural
					characteristics require further
					progress.

39

Table 9: Rehabilitation progress in Stages 3, 4 and 5 of CD 3 with reference to closure criteria contained in the Rehabilitation Strategy.

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
Decommissioning	Infrastructure and services will be removed from the REA site	All services related to refuse emplacement activities to be removed from the REA	Yes	Yes	From this Stage of Domain 3
		REA site offices and any other infrastructure to be removed	Yes	Yes	From this Stage of Domain 3
Growth medium development	Apply topsoil for rehabilitation	Topsoil placement depth	>200 cm	Yes	
	Reduce erosion on slopes, and provide furrows for seed beds	All final landform slopes to be contour ploughed	Yes	Yes	No erosion evident
Ecosystem establishment	Establish native bushland rehabilitation	Conduct seeding and/or planting	Yes	Yes - seeding / planting completed	In 1998
Ecosystem development	Self-sustaining native bushland rehabilitation (REA Rehabilitation and Water Management Plan)	Presence of weeds in monitoring transects (%)	< 10%	≺es	Weed density decreased to <10% within monitoring transects from 2023 to 2024. Weed control and monitoring should continue to ensure cover does not increase across Stages 3, 4 and 5.
		Evidence of second- generation flora germination in monitoring transects	Yes	NO	Evidence of reproductive potential, and second generation in some areas.

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
					Second generation canopy species were lacking in monitoring plot B1.
		Rehabilitation monitoring transects contain flora species and structural	Yes	No	Colonisation by target species in these stages has increased since 2023.
		characteristics similar to the desired vegetation			Structural characteristics require further progress.
		communities at the reference sites			

Table 10: Rehabilitation progress in Stages 6 and 9 of CD 3 with reference to closure criteria contained in the Rehabilitation Strategy

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
Decommissioning	Infrastructure and services will be removed from the REA site	All services related to refuse emplacement activities to be removed from the REA	Yes	Yes	From this stage of Domain 3
		REA site offices and any other infrastructure to be removed	Yes	Yes	From this stage of Domain 3
Growth medium development	Apply topsoil for rehabilitation	Topsoil placement depth	>200 cm	Yes	
	Reduce erosion on slopes, and provide furrows for seed beds	All final landform slopes to be contour ploughed	Yes	Yes	
Ecosystem establishment	Establish native bushland rehabilitation	Conduct seeding and/or planting	Yes	Yes – seeding and planting completed	In autumn 2000
Ecosystem development	Self-sustaining native bushland rehabilitation (REA Rehabilitation and Water Management Plan)	Presence of weeds in monitoring transects (%)	< 10%	Yes	Weed coverage is minimal and has remained stable from 2023-2024. Weed control and monitoring should continue to ensure cover does not increase across Stage 6 and 9
		Evidence of second- generation flora germination in monitoring transects	Yes	ON	Evidence of reproductive potential, and second generation in some areas, but particularly lacking in monitoring plot C2.

42

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
					Continue to monitor establishment and growth of second-generation canopy species.
		Rehabilitation monitoring transects contain flora species and structural	Yes	ON	Colonisation by target species in these stages has increased since 2023.
		characteristics similar to the desired vegetation communities at the			Structural characteristics require further progress, in particular, re-development
		reference sites			of the canopy in monitoring plot C1. The limited structural characteristics within Stages 6 and 9 are in part due to previous fire in 2019.

Table 11: Rehabilitation progress in Stage 12A of CD 3 with reference to closure criteria contained in the Rehabilitation Strategy

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023results)
Decommissioning	Infrastructure and services will be removed from the REA site	All services related to refuse emplacement activities to be removed from the REA REA site offices and any	Yes	Yes Yes	From this stage of Domain 3 From this stage of Domain 3
Growth medium development	Apply topsoil for rehabilitation	removed Topsoil placement depth	>200 cm	Yes	
	Reduce erosion on slopes, and provide furrows for seed beds	All final landform slopes to be contour ploughed	Yes	Yes	Erosion evident at lower stage of the eastern boundary of this domain.
Ecosystem establishment	Establish native bushland rehabilitation	Conduct seeding and/or planting	Yes	Yes – seeding and planting completed	Seeded in November 2011 and 2014
Ecosystem development	Self-sustaining native bushland rehabilitation (REA Rehabilitation and Water Management Plan)	Presence of weeds in monitoring transects (%)	< 10%	O _Z	Weed density increased in monitoring plot F1 between 2023 and 2024. Weed density in this monitoring plot is now 10% and therefore no longer meets the completion criteria threshold. Weed control and monitoring should continue to ensure weed cover does

44

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023results)
		Evidence of second- generation flora germination in monitoring transects	Yes	Yes	onot increase across this Stage. Second generation forbs, grasses, shrubs and canopy species are present in low abundance.
		Rehabilitation monitoring transects contain flora species and structural	Yes	ON.	and development of second generation flora. Colonisation by target species in these stages has increased since 2023.
		characteristics similar to the desired vegetation communities at the reference sites			Structural characteristics require further progress, in particular, canopy development in monitoring plot C1.

Table 12: Rehabilitation progress in Stages 14 and 16 of CD 3 with reference to closure criteria contained in the Rehabilitation Strategy

				3	
Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
Decommissioning	Infrastructure and services will be removed from the REA site	All services related to refuse emplacement activities to be removed from the REA	Yes	Yes	From this stage of Domain 3
		REA site offices and any other infrastructure to be removed	Yes	Yes	From this stage of Domain 3
Growth medium development	Apply topsoil for rehabilitation	Topsoil placement depth	>200 cm	Yes	
	Reduce erosion on slopes, and provide furrows for seed beds	All final landform slopes to be contour ploughed	Yes	Yes	Gully erosion present at lower slopes but appears unchanged since 2023.
Ecosystem establishment	Establish native bushland rehabilitation	Conduct seeding and/or planting	Yes	Yes – seeding and planting completed	Lower slopes - direct seeding in December 2012, reseeding of patches in 2014. Upper slopes - direct seeding in October 2015
Ecosystem development	Self-sustaining native bushland rehabilitation (REA Rehabilitation and Water Management Plan)	Presence of weeds in monitoring transects (%)	< 10%	O Z	Weed density is 10% in both monitoring plots. Weed control and monitoring should continue to ensure weed cover does not increase across this Stage.

46

Rehabilitation phase	Domain objective	Indicator	Completion Criteria	Complete (yes/no)	Comment (including comparison with 2023 results)
		Evidence of second- generation flora germination in monitoring transects	Yes	Yes	Second generation forbs, grasses, shrubs and canopy species are present in low abundance.
					Continue to monitor health and development of second generation flora.
		Rehabilitation monitoring transects contain flora species and structural	Yes	ON	Colonisation by target species in these stages has increased since 2023.
		characteristics similar to the desired vegetation communities at the reference sites			Structural characteristics require further progress.

A4 Field data sheets

© ECO LOGICAL AUSTRALIA PTY LTD 48

REA Permanent Monitoring Site Field Sheet 2023				Site Nu	mber:		Re	ferenc	e Site 001
20m x 10m quadrat		Site N	umbe	er: 001					
Species (Trees >1.6m)	No.		Tag	/ DBH (C	Diamete	r Breas	t Heig	ht)	
Eucalyptus racemosa	4		2/d	ead		4/de	ad	5	5/25
Health: Good (epicormic growth evident, no ne	w saplings t	o tag)	8/d	ead					
Unhealthy: 50%									
Eucalyptus globoidea	2		6/5.	.2		1~/4	5.3		
Health: Moderate									
Unhealthy: 30% (some defoliation)									
Health:									
Unhealthy: %								•	
Health:									
Unhealthy: %									
Canopy cover % (over 20m centreline): 10%									
Estimated topsoil depth (closure criteria >200mm): >200mm									
Weed Density (closure criteria < 10%): <0.1%									
Reject material on surface: None									
Biological nutrient recycling: Ants, termites, leaf	litter, fallen ti	imber, s	edge	tussocks,	, fallen b	ranch	es		
Fauna habitat: Leaf litter, fallen timber, sedge tus	socks, fallen k	oranche	s, ma	ture trees	s				
Comments: One prone Acacia longifolia. One new	tree tagged	in 2024.							
50 m erosion transect: No erosion evident									
Additional species in quadrat: Grevillea sphacel Senecio madagascariensis^	lata, Kunzea (ambigu	а, Асс	acia linifo	olia, Pers	soonia	linear	is, Aca	cia longifolia,

[~] Tree tagged in 2024

[^]denotes exotic species

REA Permanent Monitoring Site Field Sheet 2023			Stage:			Refere	nce	Site 002	
20m x 10m quadrat	,	Site	e Numbe	r: 002					
Species (Trees >1.6m)	No.	Tag	; / DBH (C	Diameter	Breas	st Height)			
Eucalyptus racemosa	2	3/2	7		2~/5	57			
Health: Good. Abundant epicormic growth. Unhealthy: 10%									
Eucalyptus globoidea	1	4/2	0.7						
Health: Good. Abundant epicormic growth. Unhealthy: 5%	I								
Acacia longifolia	9	5~/	5.1		6~/3	}	7^	~/3.3	
Health: Excellent and actively fruiting. Unhealthy: 0%	I	8~/	4		9~/3	3.5	15	5~/3	
		16^	·/3	17~/3.	6	24~/2			
Acacia terminalis	10	10~	·/3.3		11~/	'3.5	12	2~/3.6	
Health: Excellent and actively fruiting. Unhealthy: 0%	I	13^	//3.2		14~/	/3.2	18	8~/3.1	
		19~	·/3	20~/3.	1	21~/3		22~/3.9	
Acacia linifolia	1	23^	~/3.2			I			
Health: Excellent Unhealthy: 0% Canony cover % (over 20m centreline): 3%									
Canopy cover % (over 20m centreline): 3%									
Estimated topsoil depth (closure criteria >200mm): >200mm									
Weed Density (closure criteria < 10%): 0%									
Reject material on surface: None									
Biological nutrient recycling: Ants, termites, leaf	itter, fallen timber, c	rypto	gam, woi	mbat sca	ts, cic	ada shells,	spid	lers	
Fauna habitat: leaf litter, woody debris exposed r present.									
Comments: Acacia spp. showing continued grow new eucalypt seedlings on the ground layer. High	_			_			ese	nt, including	
50 m erosion transect: No erosion evident									
Additional species in quadrat: Scaevola ramosiss revoluta	ima, Persoonia bargo	ensis	±, Persoc	nia lined	aris, E	ucalyptus p	iper	rita, Dianella	

[~] Tree tagged in 2024 ±denotes threatened species

REA Permanent Monitoring Site Field Sheet 2024			Stage:			Stage	1 and	d 2
20m x 10m quadrat		Site Numb	er: A1					
Species (Trees >1.6m)	No.	Та	g / DBH (Diamete	r Breas	st Height)		
Acacia decurrens	7	1/3	3		2/3.:	1	6~,	/2.9
Health: Good	<u>I</u>	4/2	2.6		3/3.8	8	7~,	/2.5
Unhealthy: 0%		8~,	/3.7				1	
Allocasuarina littoralis	1	5/3	3.4					
Health: Good								
Unhealthy: 0%				<u> </u>			\perp	
	T							
Health:								
Unhealthy: 0%								
Health:	<u> </u>							
Unhealthy: 0%				1				
Canopy cover % (over 20m centreline): 0% No live canopy								
Estimated topsoil depth (closure criteria >200mm): >200mm								
Weed Density (closure criteria < 10%): 12% (Eragrostis curvula^)								
Reject material on surface: <1% small scattered								
Biological nutrient recycling: Ants, termite mound in the vicinity, leaf litter (limited), cryptogam (limited), kangaroo scats								
(limited). Three trees tagged in 2024.	acc tuccocks	small rocks						
Fauna habitat: limited leaf litter, woody debris, grass tussocks, small rocks.								
Comments: Kunzea ambigua and Acacia spp. conti	nue to domin	ate the mids	torey. Sm	all decre	ase in	exotic cove	er fro	m previous.
50 m erosion transect: No evidence of rill lines, no	erosion issue	es						
Additional species in quadrat: Persoonia linearis,	Persoonia ha	ranensis+ Co	oronidium	n oxvlenis	:			
		· g o c · · o · o · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· oxyrepic				

[~] Tree tagged in 2024

[^]denotes exotic species ±denotes threatened species

REA Permanent Monitoring Site Field Sheet 2024			Stage:		Stage 1	L and 2			
20m x 10m quadrat				Site	Number: A	.2			
Species (Trees >1.6m)	No.	Tag	g / DBH (Diamete	r Brea	st Height)				
Allocasuarina littoralis	7	7*1	N/A	4/14	.1	10/5.1			
Health: Good		1/3	;	3/3.6	ŝ	5/3.7			
Unhealthy: 0% Note* tree no. 7 is slightly outside the plot		11^	7/3.5						
	1	6/1	Г	1					
Eucalyptus punctata	1	6/1	.5						
Health: Good Unhealthy: 0%									
Eucalyptus globoidea	2	2/d	lead	8/9.2	2				
Health: One tree is dead, the other is in good cond	dition.								
Unhealthy: 50%									
Persoonia linearis	1	12^	-/4						
Health: Good									
Unhealthy: 0%									
Acacia parramattensis 2 13~/3.5 14~/5									
Health: Good									
Unhealthy: 0%									
Canopy cover % (over 20m centreline): 1 %									
Estimated topsoil depth (closure criteria >200mm): approx. 200mm									
Weed Density (closure criteria < 10%): 1% (Eragrostis curvula^)									
Reject material on surface: Yes, small to medium	sized pieces with low	cove	erage						
Biological nutrient recycling: Ants, termite mound cicada emergence occurring during surveys.	in the vicinity, leaf li	itter (moderate), crypt	ogam,	kangaroo	scats, significant			
Fauna habitat: leaf litter, woody debris, grass tuss	ocks.								
Comments: A few new Acacia spp. and Allocasuan	ina littoralis seedling	s eme	erging within plot	. Four	trees tagg	ed in 2024.			
50 m erosion transect: No erosion evident, no ero									
Additional species in quadrat: Hakea sericea, Billardiera scandens, Leptomeria acida, Kunzea an			saligna^, Dodeno	aea tri	iquetra, Sty	pandra glauca,			

[~] Tree tagged in 2024

[±]denotes threatened species

[^]denotes exotic species

REA Permanent Monitoring Site Field Sheet 2024				Stage:		Stage :	1 and	12
20m x 10m quadrat		Site Nu	Number: A3					
Species (Trees >1.6m)	No.		Tag	/ DBH (Diam	neter Breas	t Height)		
Acacia decurrens	3		1/2.	.3	2~/2		3~,	/1.5
Health: Good								
Unhealthy:								
Acacia longifolia	3		4~/:	1	5~/1		6~,	/1
Health: Good								
Unhealthy: 0%		_					1	
				<u> </u>				
Health:	I.							
Unhealthy:							1	
Canopy cover % (over 20m centreline): 0%								
Estimated topsoil depth: (closure criteria >200mn	n) approx. 20	0mm						
Weed Density: (closure criteria < 10%) < 1% (Erag	rostis curvuld	7^)						
Reject material on surface: None evident								
Biological nutrient recycling: Ants, spiders and cic	adas all prese	ent. Mod	erate	e leaf litter a	nd cryptogr	am cover.		
Fauna habitat: Shrubs, fallen timber, rocks for bask reptiles, small mammals and invertebrates.	Fauna habitat: Shrubs, fallen timber, rocks for basking/sheltering, large termite mound, litter, and logs provide habitat for birds, reptiles, small mammals and inverte brates.							at for birds,
Comments: Limited seedlings and saplings of canopy species in plot and surrounds. Abundant new growth on <i>Kunzea ambigua</i> and <i>Acacia</i> spp. throughout. Five trees tagged in 2024.								
50 m erosion transect: Rill lines slightly evident, n	o erosion issu	ies						
Additional species in quadrat: Laxmannia gracilis,	Persoonia le	vis, Coroi	nidiu	m oxylepis, F	Persoonia li	nearis, Che	ilant	hes sieberi

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Sheet 2024				Stage: Stages 3, 4 and 5					
20m x 10m quadrat		Site Num	ber:	B1					
Species (Trees >1.6m)	No.	T	ag/	DBH (Dia	ameter	r Breas	t Heigl	ht)	
Eucalyptus punctata	1	6,	/16.6	5					
Health: Good									
Unhealthy: 10% (one large dead branch)									
Eucalyptus globoidea	4	4,	/28.2	2		3/26		5,	/8.4
Health: Poor		1	2/24	.3					
Unhealthy: 80% (dieback is common)									
Allocasuarina littoralis	2	4,	/10.8	3		5~/2			
Health: Good									
Unhealthy: 0%									
Acacia binervia	2	8,	/19	<u> </u>		9~/1	0.3		
Health: Good	•								
Unhealthy: 0%								•	
Eucalyptus racemosa	2	1,	1/27.2 2/23.2						
Health: Good									
Unhealthy: 2%	<u> </u>								
Acacia falcata	1	1'	~/2.9)					
Health: Good									
Unhealthy: 0%									
Canopy cover % (over 20m centreline): 25%									
Estimated topsoil depth: (closure criteria >200mn	n): > 200mm								
Weed Density (closure criteria < 10%): 0%									
Reject material on surface: Less than 1% (small pi									
Biological nutrient recycling: ants, termites, cicad debris	as, kangaroo	scats, cryp	toga	m, leaf I	itter, n	nediun	n sized	fallen b	oranches and
Fauna habitat: Abundant leaf litter, woody debris, termite mounds, grass tussocks and dense midstorey. Suitable for birds and small mammals.									
Comments: Ground layer is relatively sparse, comprising mostly grasses. Midstorey density has increased in some areas. Plastic tree guard material scattered around the quadrat. Three trees tagged in 2024.									
50 m erosion transect: No erosion evident									
Additional species in quadrat: Acacia terminalis linearis, Acacia suaveolens, Acacia falcata, Micra gracilis									

[~] Tree tagged in 2024 ±denotes threatened species

REA Permanent Monitoring Site Field Sheet 2024			Stage:			Stages	s 3, 4 and 5	
20m x 10m quadrat		Site Num	ber: B2					
Species (Trees >1.6m)	No.	Ta	Tag / DBH (Diameter Breast Height)					
Eucalyptus punctata	4	1/	′12		3/23.	1	6/15.5	
Health: Moderate		20)*N/A	ı		1		
Unhealthy: 20% (tree 6 has several dead branches)							
Eucalyptus globoidea	1	9/	7.5					
Health: Poor				1				
Unhealthy: 95% (most branches dead)	r							
Allocasuarina littoralis	11	4/	26.5	•	12/6.	6	17/4.8	
Health: Good		18	8**N/A	19/4		21/3.8	27~/3.5	
Unhealthy: 0%		22	2/4	23/5.3	3	24/0.5	26~/3.5	
Eucalyptus crebra	2	16	5/14	25**N	/A			
Health: Poor Unhealthy: (most branches dead)								
Acacia binervata	4	7/	11.1	10~/8		11~/7	12~/14	
Health: Good								
Unhealthy: 0%	Т							
Canopy cover % (over 20m centreline): 12%				<u> </u>	<u> </u>			
Estimated topsoil depth (closure criteria >200mm): > 200mm							
Weed Density (closure criteria < 10%): 1%								
Reject material on surface: <1% scattered								
Biological nutrient recycling: Ants, termites, cicad	as, leaf litter,	kangaroo s	scats					
Fauna habitat: logs, leaf litter, woody debris								
Comments: Increased midstorey density in some a	areas and mir	or increase	in canop	y cover o	ver cen	treline.		
50 m erosion transect: Rill lines evident, no erosio	on							
Additional species in quadrat: Hakea dactyloides, oxylepis	Laxmannia g	racilis, Sisyr	nbrium of	ficinale^,	Lomano	dra multif	ilora, Coronidium	

^{*} Tree not found in 2023-24

^{**} Tree not found in 2024

 $^{^{\}sim}\,\text{Tree}$ tagged in 2024

REA Permanent Monitoring Site Field Sheet 2024			Stage: Stages 3, 4 and 5					l and 5	
20m x 10m quadrat		Site Nu	ımbe	er: B3					
Species (Trees >1.6m)	No.		Tag / DBH (Diameter Breast Height)						
Eucalyptus racemosa	2		1/1	6.5		5~/1	6.2		
Health: Good									
Unhealthy: 0%									
Allocasuarina littoralis	2		3/1	2.6	· ·	9/6.8	3		•
Health: Good									
Unhealthy: 0%									
Acacia decurrens	1		2/1.	.6					
Health: Good									
Unhealthy: 0%									
Acacia binervata	1		4~/:	3.5					
Health: Good									
Unhealthy: 0%									
Acacia longifolia	2		6~/	4	7~/3.3	3			
Health: Good									
Unhealthy: 0%									
Canopy cover % (over 20m centreline): 2 %), > 200 mm								
Estimated topsoil depth (closure criteria >200mm	i): >200mm								
Weed Density (closure criteria < 10%): 3% Reject material on surface: approx. 5% (small, sca	uttorod)								
Biological nutrient recycling: ants, scats, leaf litter	<u> </u>	dehris							
Fauna habitat: fallen timber, grass tussocks, expo			oaskii	ng habita	t. termi	te mou	ınd		
Comments: High native regeneration in understorey and midstorey although ground cover is sparse. Slight increase in canopy cover over centreline. Very minor decrease in weed cover. Four trees tagged in 2024.							se in canopy		
50 m erosion transect: No erosion evident									
Additional species in quadrat: Centaurium erythro levis, Acacia binervia, Banksia integrifolia, Dodona		s setace	us^, F	Hypochae	eris radio	cata^, L	inum trigy	num	ı^, Persoonia

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Sheet 2023				Stage: Stages 6 and 9					
20m x 10m quadrat		Site Nu	umber: C1						
Species (Trees >1.6m)	No.		Tag / DBH (Diameter Breast Height)						
Eucalyptus punctata	3		1**	N/A		14/6	.3	21	1/22
Health: Good									
Unhealthy: 0%									
Eucalyptus globoidea	3	1		N/A		19/1	0	2^	⁻ /2.8
Health: Good									
Unhealthy: 0%									
Eucalyptus crebra	1		11/	18.8					
Health: Good									
Unhealthy: 0%									
Allocasuarina littoralis	1		13/	dead	•				
Health: Poor									
Unhealthy: 100% (dead and collapsed in 2024)									
Acacia mearnsii	6		3~/:	2.5	4~/2.9)	5~/2.3		6~/3.1
			7~/:	2.8	8~/2.6	j			
Canopy cover % (over 20m centreline): 0%									
Estimated topsoil depth (closure criteria >200mm): >200mm								
Weed Density (closure criteria < 10%): 1%									
Reject material on surface: <5% (small to large si	zed pieces of	reject m	ateri	al)					
Biological nutrient recycling: ants, scats, termites									
Fauna habitat: leaf litter, twigs, grass litter small r	ocks/pebbles	and wo	ody c	debris					
Comments: Healthy understorey of emerging <i>Aca</i> trees tagged in 2024.	Comments: Healthy understorey of emerging <i>Acacia</i> spp. Canopy cover decrease due to fallen <i>Allocasuarina littoralis</i> . Seven trees tagged in 2024.							ralis. Seven	
50 m erosion transect: No erosion evident									
Om I	I							l 50r	m
Additional species in quadrat: Monotoca scoparia, Persoonia linearis, Sisymbrium officinale^, Daviesia genistifolia, Patersonia glabella, Coronidium oxylepis, Callistemon linearis, Verbena bonariensis^, Cenchrum clandestinus^, Gamochaeta sp.^									

^{*} Tree not found in 2023-24

^{**} Tree not found in 2024

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Sheet 2024			Stag	e:	Stage	6 and 9	9	
20m x 10m quadrat	S	ite Numb	er: C2					
Species (Trees >1.6m)	No.	Тад	g / DBH	l (Diame	ter Breas	st Heigl	ht)	
Acacia parramattensis	4	1 *6	N/A		11* N/A		5	~/2.7
Health: Good		8~/	' 3.4					
Unhealthy: 0%								
Eucalyptus punctata	2	1/3	30		6/25.3	3		
Health: Good								
Unhealthy: 0%								
Eucalyptus globoidea	4	4/1	.7		2/22		1	0~/8
Health: Good	1	13^	-/17					
Unhealthy: 0%					<u> </u>			
Allocasuarina littoralis	3	7* ſ	N/A		3~/3		1	2~/2.5
Health: Good	1							
Unhealthy: % 0					1		I	
Canopy cover % (over 20m centreline): 50%								
Estimated topsoil depth (closure criteria >200mm	n): >200mm							
Weed Density (closure criteria < 10%): 0%								
Reject material on surface: None								
Biological nutrient recycling: ants, scats								
Fauna habitat: fallen branches, twigs, leaf litter, g	grass litter, rocks	s/pebbles						
Comments: Eucalyptus saplings present. Acac				<i>ralis</i> are	domin	ant in	the m	nidstorey, to
approximately 2m tall. Significant increase in can	opy cover over o	centreline.						
50 m erosion transect: No erosion evident								
Additional species in quadrat: Grevillea sphacela	ıta, Lepidosperm	na laterale,	, Hake	a sericea,	. Mirbeli	a rubiif	olia, Le	ptospermum
polygalifolium, Persoonia linearis								

^{*} Tree not found in 2023-24

 $^{^{\}sim}\,\text{Tree}$ tagged in 2024

REA Permanent Monitoring Site Field She	eet 2024	Stage:		Stage 12a				
20m x 10m quadrat		Site Number: F1	e Number: F1					
Species (Trees >1.6m)	No.	Tag / DBH (D	iameter Breast Hei	ght)				
Acacia parramattensis	0							
Health: N/A – no new Acacias	1							
Unhealthy:								
Allocasuarina littoralis	12	9/7.4	10/5.9	19* N/A				
Health: Good	I .	21* N/A	25/3	26/6.4				
Unhealthy: 0%		27/7.3	34/7.3	35/3.5				
		36/7.2	37~/5.4	38~/5.3				
Eucalyptus punctata	13	11/16	12**N/A	13/10.6				
Health: Good – growth evident across mo	st tagged trees	16/5.4	17/4.8	18/7.8				
Unhealthy: 0%		20/14.5	22/8.1	23/11				
		24/13.5	14**N/A	40~/6.8				
		41~/3.9						
Acacia sp.	1	2/dead						
Health: N/A – Acacia die off noted.	I							
Unhealthy: 100%								

Canopy cover % (over 20m centreline): 35% (increased)

Estimated topsoil depth (closure criteria >200mm): > 200mm

Weed Density (closure criteria < 10%): 10% (increased)

Reject material on surface: Less than 1%, (small, scattered).

Biological nutrient recycling: Ants, spiders, fallen timber, mulch, leaf litter and macropod scats

Fauna habitat: Rocks, leaf litter, pebbles, woody mulch, sandstone rock, grass tussocks, exposed soil, fallen timber.

Comments: Midstorey is dense. Canopy has increased. Exotic cover has also increased. Four trees tagged in 2024. *Pseudonaja textilis* (Eastern brown snake) observed in plot.

50 m erosion transect: Minor erosion

Additional species in quadrat: Acacia myrtifolia, Dichelachne sp., Laxmannia gracilis, Lysimachia arvensis^, Wahlenbergia gracilis, Plantago lanceolata^, Persoonia linearis, Hibbertia aspera, Persoonia bargoensis±, Euchiton japonicus, Senecio madagascariensis^, Lepidosperma laterale, Leptospermum juniperinum, Richardia stellaris^, Acacia rubida, Centella asiatica, Bossiaea heterophylla

±denotes threatened species

^{*} Tree not found in 2023-24

^{**} Tree not found in 2024

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Shee	t 2024		Stage:		Stage 12a			
20m x 10m quadrat		Site N	Number: F2					
Species (Trees >1.6m)	No.		Tag / DBH (Di	ameter Breast He	ight)			
Acacia decurrens	5		3/3.7	10/dead	11/3.6			
Health: Low			28/dead	40~/4.3				
Unhealthy: 60% (two trees dead)								
Eucalyptus punctata	12		12**N/A	13/4.2	15/9.2			
Health: Good			18**N/A	19/6	20/4			
Unhealthy: 9% (plant no. 26 unhealthy)			26/3.3	29/7.1	8/11.5			
			35~/3.5	36~/3.8	37~/5.8			
Allocasuarina littoralis	11		16/4.2	17**N/A	21/4.8			
Health: Good			25/4.1	30/4.8	31~/3.1			
Unhealthy: 0%			33~/6.8	32~/3	34~/4.7			
			39~/4.7	38~/5				
Eucalyptus oblonga	3		12/8.8	18/5	41~/4.2			
Health: Good	·							
Unhealthy: 0%								
Eucalyptus sp.	1		24/3.5					
Health: Good								
Unhealthy: 0%								
Acacia sp.	1		28/dead					
Health: Good								
Unhealthy: 0%								

Canopy cover % (over 20m centreline): 5%

Estimated topsoil depth (closure criteria >200mm): approx. 200mm

Weed Density (closure criteria < 10%): <5% Eragrostis curvula[^]

Reject material on surface: 2% (large, scattered pieces >2cm in size in some places)

Biological nutrient recycling: Ants, kangaroo and rabbit scats, spiders, fallen timber, mulch, leaf litter

Fauna habitat: rocks, leaf litter, pebbles, woody mulch, sandstone rock, grass tussocks, exposed soil, fallen timber

Comments: Several missing tree tags and incorrectly tagged trees. *Eucalyptus punctata* in very good health. Eleven trees tagged in 2024.

50 m erosion transect: No erosion evident

0m |------| 50m

Additional species in quadrat: Dianella revoluta, Hardenbergia violacea, Bossiaea prostrata, Lomandra longifolia, Cheilanthes sieberi, Lysimachia arvensis^, Hydrocotyle laxiflora, Gonocarpus tetragynus, Facelis retus^, Panicum effusum, Acacia longifolia

^{**} Tree not found in 2024

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Sl	neet 2024	Stage:		Stages 14 and 16					
20m x 10m quadrat		Site Number: H1	e Number: H1						
Species (Trees >1.6m)	No.	Tag / DBH (I	Tag / DBH (Diameter Breast Height)						
Allocasuarina littoralis	10	2/8.8	6/6.7	7/4.2					
Health: Good	I	8/6	9/4.1	10/dead					
Unhealthy: 0%		12/7	14/3.8	20~/1					
			14,5.0	20 /1					
		21~/4.2							
Acacia parramattensis	2	4/5.1	5/13.1						
Health: Goood-Moderate									
Unhealthy: 10% (wood-boring insect dar	mage)								
Acacia decurrens	4	11/6.7	13/6.4	18~/4.1					
Health: Good-Moderate		22/2.5							
Unhealthy: 5% (wood-boring insect dam	age)								
Eucalyptus fibrosa	1	1/8.7							
Health: Good									
Unhealthy: 0%									
Eucalyptus punctata	5	15/4.6	16~/4.7	17~/7.6					
Health: Good	<u> </u>	23~/6	19~/4.6						
Unhealthy: 0%									
Canopy cover % (over 20m centreline):	7%	I							
Estimated topsoil depth (closure criteria	a >200mm): > 200mm								
Weed Density (closure criteria < 10%): 1	0% scattered <i>Ergarostis</i>	curvula^. Richardia s	tellaris^. Centauriur	m ervthera^					
Reject material on surface: <1% (small,	scattered)								
Biological nutrient recycling: ants, spide	rs, cicadas, kangaroo s	ats, grass litter and le	eaf litter						
Fauna habitat: Grass tussocks, midstory	shrubs, rocks (basking	nabitat), sandstone po	ebbles (basking hab	itat)					
Comments: Dieback observed in Acacia	spp. due to boring insec	t damage. Few trees	missing tags. Sever	n trees tagged in 2024					
50 m erosion transect: No gully erosion	evident, however rill lii	nes slightly evident							
S 0m				150m N					
	,		,	. 55/1114					
Additional species in quadrat: Lomana	lra multiflora, Hibbertio	a aspera, Dianella re	voluta, Lobelia pur _l	purascens, Laxmannio					
gracilis, Euchiton sphaericus, Pomax umi	bellata. Daviesia ulicifol	ia. Persoonia linearis							

[~] Tree tagged in 2024

[^]indicates exotic species

REA Permanent Monitoring Site Field Sheet 2024				Stage: Stage				
20m x 10m quadrat		Site Numl	lumber: H2					
Species (Trees >1.6m)	No.	Та	g / DBH (D	iameter Breast H	Height)			
Allocasuarina littoralis	9	1/	6.2	2/8.1	9/8.9			
Health: Good		10)/5.8	12/7.4	17/4.3			
Unhealthy: 5%		20)/2	27/2.8	33~/2.7			
Eucalyptus punctata	12	3/	4	4/6.8	15/7.8			
Health: Good		18	3/15.1	21/5	22/6.7			
Unhealthy: 2%		23	3/3.5	24*N/A	25/8			
		28	3/6.6	26/9.3	35~/3.5			
		34	l~/6/7					
Eucalyptus sp.	4	14	ŀ*N/A	30/4	31/4.5			
Health: Good	<u>I</u>	22	.*N/A					
Unhealthy: 0%								
Acacia decurrens	1	32	2/6.8					
Health: Moderate								
Unhealthy: 50% (prone with roots exposed, but st healthy)	ill alive and ap	ppears						
Canopy cover % (over 20m centreline): 15%								
Estimated topsoil depth (closure criteria >200mm	n): >200mm							
Weed Density (closure criteria < 10%): 10%								
Reject material on surface: 1% (small and large pi	eces, scattere	ed)						
Biological nutrient recycling: Ants, scats, spiders,	leaf litter and	grass litter						
Fauna habitat: Mulch, grass/leaf litter, rocks, sand	dstone pebble	s, shrubs a	nd twigs					
Comments: No change in canopy cover over centr	reline or weed	l cover. Fev	trees not	found. Three tree	es tagged in 2024.			
50 m erosion transect: No erosion, deep rill lines	evident.							
N 0m					-I 50m S			

Additional species in quadrat: Allocasuarina littoralis, Acacia suavaeolens, Astroloma humifusum, Persoonia bargoensis±,

Persoonia linearis, Gonocarpus tetragynus, Lomandra multiflora, Davesia ulicifolia, Mirbelia rubiflora

±denotes threatened species

^{*} Tree not found in 2023-24

 $^{^{\}sim}\,\text{Tree}$ tagged in 2024

2024 Appendix B – Annual Walkover

Refuse Emplacement Area

Tahmoor Coal Pty Ltd 1

Table of Contents

Abbreviations	Table of Contents	2
2.0 Methodology 5 3.0 Trigger Action Response Plan 6 3.1 Trigger Action Response Plan Classification 6 4.0 Results 7 4.1 REA Stages 1 & 2: 10 4.2 REA Stages 3, 4 & 5: 11 4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	Abbreviations	2
3.0 Trigger Action Response Plan	1.0 Introduction	3
3.1 Trigger Action Response Plan Classification 6 4.0 Results 7 4.1 REA Stages 1 & 2: 10 4.2 REA Stages 3, 4 & 5: 11 4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	2.0 Methodology	5
4.0 Results 7 4.1 REA Stages 1 & 2: 10 4.2 REA Stages 3, 4 & 5: 11 4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	3.0 Trigger Action Response Plan	6
4.1 REA Stages 1 & 2: 10 4.2 REA Stages 3, 4 &5: 11 4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	3.1 Trigger Action Response Plan Classification	6
4.2 REA Stages 3, 4 &5: 11 4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	4.0 Results	7
4.3 REA Stages 6 and 9 12 4.4 REA Stages 7, 10 and 12B 13 4.5 REA Stage 8 13 4.6 REA Stage 12A 14 4.7 REA Stages 14 and 16 15 4.8 No. 2 Shaft 11kV Underground Power Line Corridor 16 5.0 Recommendations: 17 6.0 Grass Trials 17 6.1 Results 25	4.1 REA Stages 1 & 2:	10
4.4 REA Stages 7, 10 and 12B	4.2 REA Stages 3, 4 &5:	11
4.5 REA Stage 8	4.3 REA Stages 6 and 9	12
4.6 REA Stage 12A	4.4 REA Stages 7, 10 and 12B	13
4.7 REA Stages 14 and 16	4.5 REA Stage 8	13
4.8 No. 2 Shaft 11kV Underground Power Line Corridor	4.6 REA Stage 12A	14
5.0 Recommendations:	4.7 REA Stages 14 and 16	15
6.0 Grass Trials	4.8 No. 2 Shaft 11kV Underground Power Line Corridor	16
6.1 Results	5.0 Recommendations:	17
	6.0 Grass Trials	17
7.0 Walkover Form – Native Vegetation/Ecosystem27	6.1 Results	25
	7.0 Walkover Form – Native Vegetation/Ecosystem	27

Abbreviations

Abbreviation Description	
REA	Refuse Emplacement Area
TARP	Trigger Action Response Plan

1.0 Introduction

Tahmoor Coal has undertaken the Annual Rehabilitation Walkover for 2024 of the 12 stages rehabilitated to date located within the Refuse Emplacement Area (REA) of Tahmoor Coking Coal Operations in Tahmoor. The REA is located in Mining closure Domain 3 shown in **Figure 1**.

The Walkover included the following areas for assessment:

- Six (6) rehabilitated and revegetated areas established over historic refuse emplacement areas. These areas include Stages 1-2, Stages 3, 4 and 5, Stage 8, Stages 6 & 9, Stage 12a, 14 & 16 (Higher & Lower benches) and 17; and
- No. 2 Shaft 11KV Power Line Corridor

The above stages assessed during the rehabilitation walkover are shown in Figure 2.

The rehabilitation monitoring was undertaken in accordance with the Tahmoor Coal Rehabilitation Management Plan (TAH-HSEC-00402) and Rehabilitation Monitoring procedure (TAH-HSEC-00012) which states:

The purpose of the annual inspection is to provide a "rapid" style assessment (via a walkover or flyover) of all existing (including recently completed rehabilitation areas) across the operation.

The primary focus is to identify rehabilitation failures or maintenance issues that if left unchecked could hinder succession of rehabilitation or result in expensive remediation. The inspection includes but is not limited to identification of:

- a) erosion (rill, gully and tunnel);
- b) stability and functioning of erosion and sediment control and water management structures;
- c) visual assessment of vegetation cover, species diversity, vegetation health and growth rates; and
- d) presence of weeds and pests.

Trials have been established within the older sections of revegetation to consider the efficacy of planting and/or seeding with native grasses to increase native vegetation cover and increase organic matter in the soil profile, in patches with limited vegetation. Photo monitoring was carried out at these trial sites and a visual assessment recorded.

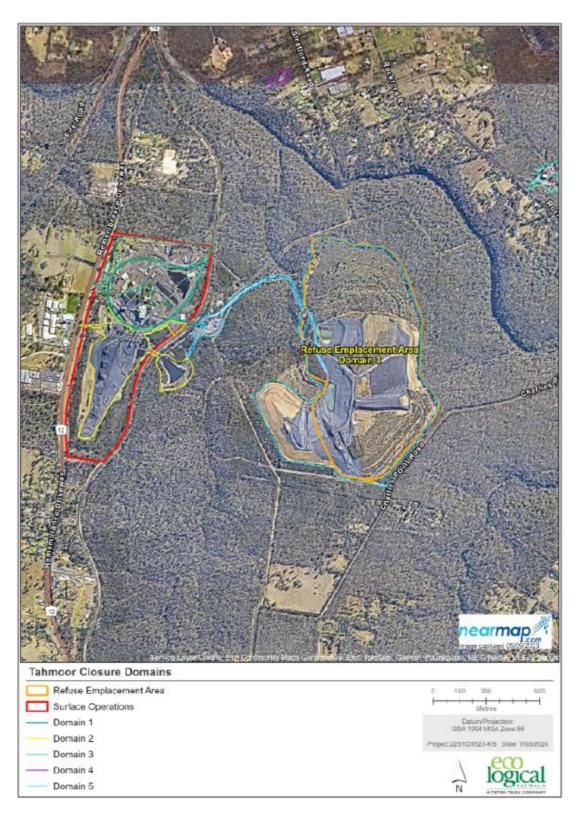


Figure 1 – Tahmoor Coal surface operations and refuse emplacement area.

2.0 Methodology

The REA and No. 2 Shaft 11kV power corridor were traversed by foot on the 11 November 2024 by Tahmoor Coal Environmental Specialists Natalie Brumby and Thomas O'Brien.

The rehabilitation monitoring was recorded on Tahmoor Coal Annual Rehabilitation Inspection (Walkover Form) to collect the following information:

- visual assessment of surface materials
- evidence of erosion
- occurrence of potholing or slumping
- evidence of spontaneous combustion
- evidence of contamination or other limitations to vegetative establishment
- stability and function of erosion and sediment control structures
- integrity of water management structures
- evidence of soil profile development
- evidence of poor growth rates
- evidence of plant mortality or dieback
- native species diversity including evidence of target species in each stratum
- exotic species and density
- evidence of regeneration and seeding
- evidence of biological nutrient cycling
- additional factors which will impact on revegetation.

Sites and features were recorded and photographed and are presented within this report. Additional photos were captured at permanent monitoring sites during monitoring (**Appendix A**).

Tahmoor Coal Pty Ltd

3.0 Trigger Action Response Plan

A Trigger Action Response Plan has been developed to classify the status of rehabilitation progress and to provide a response to this progress and adequacy. These classifications are given in **Table 1** and the Stages classified in **Table 2** below.

Table 1 Rehabilitation Status Trigger Action Response Plan

Annual Rehabilitation Status	Description	Action
VC	Generally, exceeds the good practice standards and regulatory requirements by a significant margin.	No further action. Continue to maintenance activities as scheduled.
С	Generally good practice standards and regulatory requirements subject to normal variance	No further action. Continue to maintenance activities as scheduled.
NC1	Not complying with some regulatory requirements and improvement needed to meet required good practice standards. Required works minor in nature and generally within budgeted site program	Undertake minor works to improve rehabilitation to minimum standard prior to next annual inspection
NC2	Not complying with significant risk to this inspection item, urgent corrective action needed. Requirements generally substantial in nature and beyond a budgeted site program	Undertake major works required to improve rehabilitation to minimum standard prior to the next annual inspection.

3.1 Trigger Action Response Plan Classification

Table 2 Rehabilitation Stages Classification Status for 2024

Area	Status Rating	Comments
1-2	С	Minor gully erosion to be improved, continued weed control
3, 4 &5	С	Continued weed control
6 & 9	С	Continued weed control
8	No Status	Rehabilitation still establishing
12a	С	Opportunity for additional plantings in bare patches
14 & 16	С	Continued weed control
17	No Status	Rehabilitation still establishing

4.0 Results

Trigger Action Response Plan classifications for each stage are provided in **Appendix A**.

The field survey record sheets (using Tahmoor Coal Annual Rehabilitation Inspection (Walkover Form)) for the rehabilitation monitoring are provided in **Appendix B**.

Overall, native vegetation cover has remained stable over the past 12 months, with an increase noted in seedling varieties in native understorey cover and diversity observed across the REA during the walkover. However, continued improvement in additional grass species and canopy vegetation is recommended in some stages and a focus on vegetating bare patches noted during the walkover.

Over the past year (1st November 2023 to 31 October 2024) there has been approximately 922.6 mm of precipitation (Camden weather station). This is above the average annual rainfall for the area (~749.8mm) and above the rainfall received in the previous year, which was below average at 677.5mm of rainfall (BOM 2024).

The moderate rainfall received has supported the growth of seedlings and saplings of second-generation Eucalyptus species, and Allocasuarina littoralis across the REA. During the walkover, an abundance of diversity among understorey seedling species including shrubs, grasses, sedges and forbs was noted. However, some bare areas remain with sparse vegetation.

As of 13 November 2024, El Niño Southern Oscillation (ENSO) remains neutral, with sea surface temperatures (SSTs) in the central equatorial Pacific Ocean at ENSO-neutral levels (BOM 2024). The Bureau's model suggests SST's are likely to remain within the ENSO-neutral thresholds throughout the forecast period to February 2025. Alt is unlikely that the vegetation within the REA will be negatively affected by any shift in La Niña or El Niño conditions as forecasts predict neutral conditions. Therefore, the impacts of La Niña and El Niño events are considered unlikely to affect the stability of species diversity and cover across the REA over the next 12 months.

There was little change observed in erosion points throughout the REA with drainage lines in good condition. It is recommended that areas previously identified with minor erosion are monitored throughout the year. Some remediation had been undertaken during 2024 on erosion points in Stages 12a and developing Stage 8 with the addition of coir logs.

Stages 6 and 9 within the REA show good coverage of native grass cover and continued growth of Allocasuarina and Eucalyptus seedlings. The mature rehabilitated vegetation in Stages 1 and 2 remain stable with a high abundance of native Kunzea ambigua being present. Generally, the groundcover contains a diversity of native grasses with moderate Tahmoor Coal Pty Ltd

cover through-out the rehabilitated stages with some bare areas for improvement noted. Continued monitoring, and actions to control weed populations within the REA is recommended throughout the next year. Trigger Action Response Plan classifications for each stage are provided in **Appendix A**.

The field survey record sheets (using Tahmoor Coal Annual Rehabilitation Inspection (Walkover Form)) for the rehabilitation monitoring are provided in **Appendix B**.

Continued weed suppression and eradication of Acacia saligna was undertaken during 2024 with no species noted during the walkover. Continued monitoring will be undertaken during 2025.

The following sections provide a general summary on each of the rehabilitated stages within the REA. Additional features recorded during the walkover survey are mapped in Figure 2. This map does not provide all occurrences of the presented features, however, it provides an indication of features which may impact on the on-going progression towards self-sustaining native vegetation.

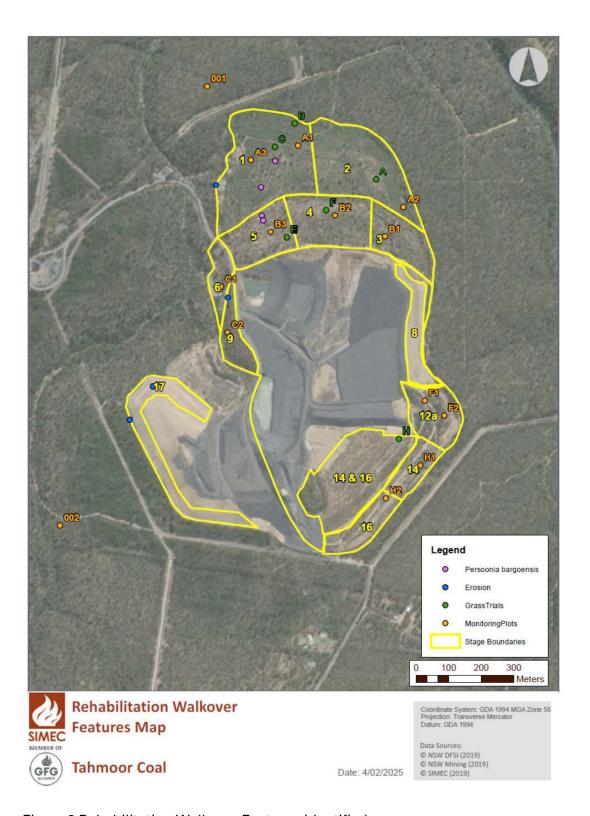


Figure 2 Rehabilitation Walkover Features Identified

Tahmoor Coal Pty Ltd

4.1 REA Stages 1 & 2:

Planted: Spring 1993 by direct seeding and 1996 by tubestock planting.

The vegetation is progressing towards self-sustaining native vegetation. Continued weed suppression was undertaken during 2024 for weeds and Acacia saligna, however some annual weed species were present during the walkover. It is recommended to continue regular ongoing maintenance to manage weed incursion. Maintenance activities, primarily targeted weed control during peak growth periods, are still required within these stages. Strategies should be implemented to extend grass cover and additional canopy species to those areas with limited vegetation establishment:

Soil stability and development:

- Stable with good sound erosion controls (contour banks)
- Soil development continues to progress with nutrient cycling of fallen woody debris and increased leaf litter cover. Ants and termite mounds noted throughout section.
- Rock lined drains to the north-west in good condition with no erosion issues evident.

Native vegetation cover and diversity

- Native grass cover has remained mostly unchanged across stages 1 and 2 since 2023.
- Increase in native seedling diversity emergence across Stage 1 & 2 since 2023. There are patches of monoculture evident with Casaurina sp and Kunzia sp.
- Canopy approximately 10 15 m tall, including; Eucalyptus punctata, Allocasuarina littoralis and lower canopy species, Banksia spinulosa, Hakea sp, Acacia decurrens and Acacia binervia.
- Non-endemic species midstorey species, Leptospermum laevigatum is still present with high cover in stage 2, however Kunzea ambigua is abundant elsewhere especially in Stage 1.
- Native seedlings and saplings such as Eucalyptus spp., and Allocasuarina littoralis have continued to grow from the previous year.
- Groundcover diversity across the stages includes native grasses, forbs and shrubs, including, Themeda triandra, Aristida ramosa and Astroloma humifusum among others.
- Many Bare areas noted during inspection. Additional Eucalyptus sp and grass species recommended to be planted.

Weed cover

• Weed cover has decreased significantly across stages 1 and 2 over the past few years. Eragrostis curvula (African Lovegrass) noted in Stage 2.

4.2 REA Stages 3, 4 &5:

Planted: Autumn 1998 by direct seeding and tubestock planting

The vegetation within these rehabilitation areas is progressing towards self-sustaining native vegetation. Continued maintenance weed control and management of patches with limited vegetation are still required to satisfy this requirement.

Soil stability and development:

- Soil development continues to progress with nutrient cycling of woody debris and increased leaf litter cover
- •Some soil crusting noted on the western area of Stage 5
- Gully erosion still present within Stage 5 boundary where the midslope begins
- All contour banks and water management structures are stable.

Native vegetation cover and diversity:

- Native species cover seems to have increased with additional seedlings noted throughout the stages, especially canopy trees (ie. Eucalypt sp. and Allocasaurina littoralis).
- Native species diversity seems to have remained similar to 2023.
- Second generation Eucalyptus spp., seedlings and Allocasuarina littoralis seedlings are still present across stages.
- Recruitment of new canopy species Allocasuarina littoralis and Acacia binervia seedlings is also evident.
- Moderate native grass cover and diversity in these stages, however many bare areas.
- Tree species noted to be in good health overall.

Tahmoor Coal Pty Ltd

Weed cover

- Low weed presence noted with Sisymbrium officinale (Hedge Mustard) across stages 3, 4 and 5, mainly concentrated in the south top sections of the stages and Hypochaeris radicata noted throughout stages.
- On-going control is required for E. curvula. Hand removal is to be used where weed populations are limited to protect native species. Large patches of these species require spraying of herbicide.

4.3 REA Stages 6 and 9

Planted: Autumn 2000 by direct seeding and tubestock planting.

Prior to 2020, the vegetation within these two stages was slowly progressing towards self-sustaining native vegetation with the presence of limited 2nd generation plants and colonisation from neighbouring bushland. During 2020, these stages were affected by an uncontrolled bushfire in summer 2019/2020. The canopy layer was also consumed by fire, however many canopy species have survived and contain epicormic growth. In general, both the cover and diversity of the groundcover layer improved in post fire conditions.

Several threatened species including Grevillea parviflora subsp. parviflora and Persoonia bargoensis have been recorded across these stages, with most recorded in Stage 6.

During the 2022 rehabilitation assessment, Stages 6 and 9 was recorded to have recovered well in post fire conditions, Acacia growth which was dominant in the previous year had begun to be replaced with Eucalypt and Allocasuarina regeneration whilst continuing to have a high density of Acacia growth. The groundcover has also returned with living groundcover species, ranging from approximately 40 – 70% native cover. The groundcover is made up of graminoids, as well as regenerating shrubs such as Hakea sp., Daviesia ulicifolia and Kunzea ambigua.

During 2023, litter cover was noted to had increased in these stages, with low weed cover overall. Acacia sp. continue to have a dominant presence across the mid-storey, with a moderate decrease in species diversity overall. Native grass cover was noted as variable, but stable overall.

2024:

Soil stability and development

• Slopes are generally stable

- Minor gully erosion recorded closest to haul road, this has worsened during 2024 during rain events and is scheduled for remediation early 2025.
- Minor gully erosion to the Dam S7B in the north of stage 6 and adjacent to road present
- Litter cover is moderate and has increased since 2023.

Native vegetation cover and diversity

- Native species diversity has remained similar to 2023.
- Acacia spp. continue to have a high cover across the midstorey
- Shrub and canopy species regeneration is evident with emerging Acacia spp. and Allocasuarina littoralis
- A. littoralis and Eucalyptus seedlings continue to be present in the midstorey / low canopy
- Tree health was variable with a small number of A. littoralis and Eucalyptus in poor condition, especially in Stage 6.
- Native grass cover was variable, but stable overall.

Weed cover

- Weed cover continues to be is very low across these stages
- Hypochaeris radicata (Flatweed) continues to dominate these stages, however in very low, sporadic occurrences.

4.4 REA Stages 7, 10 and 12B

These areas were modified by earthworks and mining operations during 2022. Stages 7, 10 and 12b are currently undergoing refuse emplacement activities.

4.5 REA Stage 8

Stage 8 was planted by direct seeding during September 2022

Soil stability and development

• Erosion control rock-lined channels remain stable.

Tahmoor Coal Pty Ltd

- Some erosion has been remediated in the north section of this area with coir logs installed along contours. Branches and rocks have been emplaced within eroded sections to prevent further degradation.
- Ground is predominately bare with areas of leaf matter and bark deposits schrewn across the contours.

Native vegetation cover and diversity

• Species establishing include Acacia sp., Hardenbergia sp., lomandra sp., and other grass species.

Weed cover

- This area is dominated with weed species and needs regular attention to reduce their prevalence across this stage.
- Weeds identified include Nightshade (Solanum sp.), Verbena sp, and Nova scotia (Scotch thistle).

4.6 REA Stage 12A

Planted: Lower benches (section A) planted by direct seeding in November 2011

Soil stability and development

- Erosion control rock-lined channels remain stable.
- Soil development progressing with nutrient cycling and increased litter cover
- Rip lines present, however becoming less evident as branch, leaf and grass litter continue to accumulate over topsoil.

Native vegetation cover and diversity

- Native species diversity has remained stable for 2024.
- Highly diverse groundcover layer with native grasses, forbs and sedges including Astroloma humifusum, Glycine clandestinum, Entolasia stricta and Mirbelia rubifolia present.
- Juvenile E. punctata, E. fibrosa, Angophora floribunda and A. littoralis still present in understory vegetation.
 - Upper benches have established more effectively than the lower benches for overall vegetation coverage.

Tahmoor Coal Pty Ltd

• Midstorey composition remains similar to 2023, with many species including Kunzea ambigua, Hakea sericea, Melaleuca thymifolia, Dodonaea viscosa subsp. cuneata and Dianella revoluta var. revoluta.

Weed cover

Eragrostis curvula confined to certain areas (ie. Drainage ways) however still
present and Hypochaeris radicata was noted scattered across the stage however
sparse coverage. On-going control is required for these species. Hand removal is to
be used where weed populations are limited to protect native species. Large
patches of these species require spraying of herbicide.

4.7 REA Stages 14 and 16

Planted: Lower benches planted with native species and sterile pasture species, Japanese Millet and Perennial Rye grass, by direct seeding in December 2012.

Upper benches planted in October 2015 by direct seeding.

Soil stability and development

- Rock lined drains stable and in good condition.
- Native shrubs and groundcovers have good coverage, which continues to stabilise the soil.
- Continued accumulation of grass, leaf litter and mulch/branches throughout this stage.

Native vegetation cover and diversity

- Good coverage and native species diversity.
- Native grass cover is low overall, with many bare areas.
- In 2023 a reduction in canopy species Eucalyptus punctata and Angophora floribunda recorded in the north of stage 14 and 16, however tree growth otherwise stable for 2024.
- Midstorey composition includes Kunzea ambigua, Dodonaea viscosa subsp.
 Cuneata, Persoonia linearis and several Acacia spp.

Weed cover

• Eragonis curvula presence has been reduced however further remediation is required for these stages.

• Still presence of Eragrostis curvula, Conyza bonariensis and Cynodon dactylon. Further remediation is required for these stages.

4.8 No. 2 Shaft 11kV Underground Power Line Corridor

Rehabilitation carried out in November 2017 by the respreading of topsoil and original cleared vegetation and woody debris (Figure 2).

Soil stability and development

- The corridor is stable with good stability along banks of Tea Tree Hollow Creek with no erosion evident during the assessment.
- Incorporation of organic matter into topsoil has been completed. Ample leaf litter noted.
- Evidence of ants, ant mounds and termite mounds within area.

Native vegetation cover and diversity

- Canopy species present and continue to grow in DBH. Many Eucalyptus sp. noted.
- High cover of midstory shrubs regenerating including Kunzea sp, Grevillea sp and Leptospermum sp.
- High cover and abundance of grasses, sedges, forbs, and climbers noted along the corridor continues to be noted.
- Leaf litter, grass litter and plenty of fallen branches are present and contributing to decomposition rates as noted in 2023.

Weed cover

 Generally, very low weed cover. No weed species were identified during the 2024 inspection.

Tahmoor Coal Pty Ltd

5.0 Recommendations:

- Continue regular weed control maintenance across all stages of the REA through 2025. Regular monitoring in Stage 3 for Acacia saligna populations and Stage 1 for Eragrostis curvula (African Lovegrass).
- Bare patches in all stages for future improvements have been identified, especially Stage 12a lower slopes.
- Increase canopy and groundcover species in Stages 1-2.
- Erosion noted on the western edge of Stage 1. Continue to regularly monitor and remediate where required.
- Historic waste disposed of on slope at 11KW Powerline easement. Remove if possible.

6.0 Grass Trials

Tahmoor Coal Pty Ltd established grass trials in 2014 to investigate the effectiveness of introducing native grasses into areas with limited vegetation. These were established using several different methods and a mixed of native grass species indigenous to the local area. Based on photos within the establishment report (Peter Harper, Bettersafe, 2014). Trial D has been discontinued as the area has been stripped and re-utilised for additional emplacement.

- Trial E was established by planting Hiko cells, and the other trials were established by raking Organic Growing Medium (OGM) over the soil surface and spreading native grass seed.
- Trial area F was added within Stage 4 and another fenced area was added to the upper slope of stage 14 in 2019.
- Trial H within Stage 14 and 16 upper slopes; and
- Trial G within Stage 8 have a series of single wire fencing set up directly adjacent to trials which were added in 2020.

A brief visual assessment of native grass and exotic cover was carried out within each trial area during the rehabilitation monitoring in November 2024. Photos of trials A, B, C, E, F and H are provided below.

The locations of the trials are indicated in Figure 2.

Tahmoor Coal Pty Ltd 17

Figure 4: Trial A in Stage 2

Figure 5: Trial B in Stage 1

Figure 6: Trial C within Stage 1

Figure 7: Trial E in Stage 5

Figure 8: Trial F in Stage 4

Figure 9: Trial H (a) in Stage 14 &16

Figure 10: Trial H(b) in Stage 14 & 16

Figure 11: Trial H (c) in Stage 14&16

6.1 Results

A summary of the results recorded from these trials is provided in **Table 3 below**. The establishment of native grasses was highest in grass Trial H, whereby establishment method was by raking OGM and planting Hiko cells. During 2024, weed coverage has decreased in Trial H and still remains the highest in grass cover when compared with all the other Trials. Trial E and F had the least grass coverage however good diversity in emerging seedling species. Trials A, B and C had good grass coverage with less species diversity. Low weed presence was noted for all trails during 2024 inspections.

There was an overall pattern of reduced cover and abundance of exotic species.

This decrease in overall vegetative cover and species diversity may be a result of slightly drier and warmer than average temperatures.

Trial areas with successful native grass establishment have shown improved native species cover and diversity over the years since establishment of the trial. Areas with poor grass establishment have shown no significant increase in native ground cover.

Table 3: Grass Trial Results 2024

Trial	Location	Native Grass sp Coverage	Weeds	Comments
A	Stage 2	<15%	None Observed	- Small patches of grass sp. - Many Allocasaurina seedlings establishing - Approx 50% bare ground with minimal amount of branch and leaf litter
Ω	Stage 1	<5%	None Observed	- Small patches of grass sp. - Trial dominated by Kunzea ambigua with other understorey species incl Acavia longifloia.
O	Stage 1	<40%	None Observed	- Main patch of Aristida ramosa sourrounded by individual plants. - <30% Bare ground - Leaf litter present
ш	Stage 5	<5%	None Observed	-Many Allocasaurina sp seedlings establishing -Minimal grass species observed with large diversity of many other species establishing within plot Plot contains large amount of bare areas littered with other seedling sp. establishingSurface has a good amount of leaf litter, branches and plant matter
ட	Stage 4	<15%	None Observed	-Large diversity of many understorey and canopy species establishing within this plot incl. Allocasaurina littoralis and Acacia spApprox 50% bare ground littered with fallen branches and some leaf litter
エ	Stage 14 & 16	20-60%	A patch of various weeds in Plot b.	-Great ground coverage. However, there are some weed species observed in plot B. -Plot A has great grass sp. establishment with plot completely full. -Acacia dentata and Acacia longifolia establishing in Plot B. Plot C contains most bare ground and <15% grass coverage. This plot has one Acacia longifolia establishing with fallen branches and leaf litter present.

7.0 Walkover Form – Native Vegetation/Ecosystem

Tahmoor Coal	
REA Stage	Stages 1 & 2
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	
	\ <u>\</u>

Inspection Item	Comment	Location of	Co-	Photo No.	Action(s)
		Rehabilitation	ordinates		Recommened
		Area			
Visual assessment of	Fallen Debris and branches			See Folder:	
surface materials	adding to Organic Matter			W:\E&C\7	
(eg. Large rocks,	(OM).			Environment\19	
bare areas>0.1ha)	Lots of leaf litter (Acacia			Rehab &	
	and Casuarina leaf litter)			Closure\2024_Rehab	
	Minimal reject identified on			Monitoring	
	the surface from Ant			(Eco)\Rehab	
	mounds.	, , , , , , , , , , , , , , , , , , ,		Walkover\Photos	
Evidence of erosion	None	REA Stage			
(eg. Sheet, rilling,		1 Ø Z			
gullying and severity)					
Occurrence of	None				
potholing or					
slumping					
Evidence of	None				
spontaneous					
combustion					

Tahmoor Coal Pty Ltd

contamination or the east on the contoured other limitations to bank. vegetative establishment (eg. surface crusting, staining of soil surface etc.) Stability and function Working and in order. of erosion and sediment control structures Integrity of Water No issues with dams, drains Management or contour banks. Structures (e.g. dams, drains) Contour banks. Structures (e.g. dams, drains) Fividence of soil Yes, plenty of leaf litter and profile development decomposition, ie. Fallen (e.g. leaf litter, branches etc decomposition, pedality etc.) Evidence of poor Some Casaurinas are Growth rates e.g. showing stunted growth, growth stunting however, still seeding. Understory cover abundant.	
ent	
ent	
ent	
ent	
gement :tures (e.g. s, drains, bur s) :nce of soil e development leaf litter, mposition, lity th rates e.g. th stunting	
tures (e.g., s, drains, our s) solur s) since of soil e development leaf litter, mposition, lity thrates e.g. th stunting	
s, drains, our s) snce of soil e development leaf litter, mposition, lity th rates e.g. th stunting	
s) snce of soil e development leaf litter, mposition, lity thrates e.g. th stunting	
s) Ince of soil e development leaf litter, mposition, lity Ince of poor th rates e.g. th stunting	
e development leaf litter, mposition, lity lity th rates e.g. th stunting	
e development leaf litter, mposition, lity lity rates e.g. th stunting	
leaf litter, mposition, lity nce of poor th rates e.g. th stunting	
mposition, lity ance of poor th rates e.g. th stunting	
lity ince of poor th rates e.g. th stunting	
th rates e.g.	
Understory cover abundant.	
Allocasaurina seedlings	
establishing.	

Evidence of plant	Some Acacia species dead.	
mortality or dieback	Many branches have fallen	
	and litter the ground in	
	these Sections.	
Native Species	There is a good diversity	
diversity-evidence of	throughout. There are many	
target/framework	patches of monoculture	
native species	areas occurring (i.e.	
present in each	Casaurina sp, Kunzea sp.	
stratum i.e. upper,	And Lomandra sp.	
mid		
and lower		
Evidence of	Yes, many species	
regeneration/seeding	flowering and seeding (ie.	
	Hakea sp.)	
	2 nd generation canopy	
	species including	
	Eucalyptus sp and	
	Allocasaurina littoralis.	
	2 nd generation Acacia	
	species and grasses.	
	Many seedlings establishing	
Evidence of	Surface lichen and mosses	
biological nutrient	Ant and termite activity	
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)		Continue control of Acacia saligna

REA StageStages 3, 4 &5Date of Inspection11/11/2024Inspected byNatalie Brumby	
Signature	

Inspection Item	Comment	Location of	Co-ordinates	Photo No.	Action(s)
		Rehabilitation			Recommened
		Area			
Visual assessment of	Lots of leaf litter			See Folder:	
surface materials	adding to OM.			W:\E&C\7	
(eg. Large rocks,	Thick leaf litter			Environment\19	
bare areas>0.1ha)	mulch in Stage 3			Rehab &	
	upperbenches.			Closure\2024_Rehab	
	(Acacia and			Monitoring	
	Allocasaurina			(Eco)\Rehab	
	sp.)			Walkover\Photos	
	Bare patches	0 0 0 0 0 0 D			
	noted throughout	REA Stage 5, 4 &5			
	sections.				
Evidence of erosion	None	•			
(eg. Sheet, rilling,					
gullying and severity)					
Occurrence of	None				
potholing or					
slumping					

30

Evidence of	None		
spontaneous			
combustion			
Evidence of	None		
contamination or			
other limitations to			
vegetative			
establishment (eg.			
surface crusting,			
staining of soil			
surface etc.)			
Stability and function	Working and in		
of erosion and	order.		
sediment control			
structures			
Integrity of Water	No issues with		
Management	dams, drains or		
Structures (e.g.	contour banks.		
dams, drains,			
contour			
banks)			
Evidence of soil	Yes, plenty of		
ment	leaf litter and		
(e.g. leaf litter,	decomposition,		
decomposition,	ie. Fallen		
pedality	branches etc		
etc.)			
Evidence of poor	None noted		
Growth rates e.g.	during		
growth stunting	inspection.		
		-	

mortality or dieback d	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		-
	uyiiig dack witii		
_	falling branches		
<u>S</u>	across stages.		
Native Species G	Good diversity	More	re
diversity-evidence of t	throughout	ground	groundcover
target/framework s	stages.	species	ecies
native species	More established	recom	recommended to
present in each	Canopy trees	COVER	cover bare
stratum i.e. upper, tl	than compared	patch	patches in these
mid	with Stages 1 &	stages	ges
and lower 2	2.		
Evidence of	Yes, many		
regeneration/seeding s	species		
	flowering and		
8	seeding incl		
	Hakeas and		
4	Acacia sp.		
	May seedlings		
Ψ	emerging of		
	understory and		
0	canopy species.		
Evidence of A	Ant activity noted		
biological nutrient			
cycling			
in Native			
woodland/forest			
areas e.g.			
puff balls			
List Other(s)			

Tahmoor Coal	
REA Stage	Stages 6 & 9
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	

Occurrence of	None	
potholing or		
slumping		
Evidence of	None	
spontaneous		
combustion		
Evidence of	None	
contamination or		
other limitations to		
vegetative		
establishment (eg.		
surface crusting,		
staining of soil		
surface etc.)		
Stability and function	Working and in	
of erosion and	order.	
sediment control		
structures		
Integrity of Water	No issues with	
Management	dams or contour	
Structures (e.g.	banks. Some	
dams, drains,	erosion noted	
contour	around drainage	
banks)	ways into dams	
Evidence of soil	Leaf litter and	
profile development	decomposition	
(e.g. leaf litter,	present, ie.	
decomposition,	Fallen branches,	
pedality	leaves etc	
etc.)		

Growth rates e.g. during growth stunting inspection. Evidence of plant falling back with falline across stages. Matwes species Canopy ps: make sericea and lower and l	Evidence of poor	None noted	
ence of plant tality or dieback tality or dieback ve Species rsity- evidence of st/framework re species ent in each tum i.e. upper, lower ence of ence of neration/seeding	Growth rates e.g.	during	
ve Species ve Species rsity- evidence of et/framework ve species ent in each :um i.e. upper, lower ence of neration/seeding	growth stunting	inspection.	
ve Species ve Species rsity- evidence of st/framework ve species ent in each :um i.e. upper, lower lower ence of neration/seeding		Acacia species	
ve Species rsity- evidence of st/framework /e species ent in each :um i.e. upper, lower ence of neration/seeding		dying back with	
ve Species rsity-evidence of et/framework /e species ent in each :um i.e. upper, lower lower ence of neration/seeding		falling branches	
ve Species rsity- evidence of st/framework /e species ent in each :um i.e. upper, lower lower ence of neration/seeding		across stages.	
et/framework /e species ent in each :um i.e. upper, lower ence of neration/seeding		Good diversity	
et/framework /e species ent in each :um i.e. upper, lower ence of neration/seeding	diversity- evidence of	throughout	
ent in each um i.e. upper, lower ence of neration/seeding	target/framework	stages.	
ent in each um i.e. upper, lower ence of neration/seeding	native species	Canopy sp:	
lower lower ence of neration/seeding	present in each	Eucalyptus and	
lower Hakea sericea and Persoonie linearis. Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings ence of Seedlings establishing heration/seeding species flowering and seedingincl seeding incl	stratum i.e. upper,	Allocasaurina sp,	
Hakea sericea and Persoonis linearis. Grasses incl Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing on/seeding species flowering and seeding incl seeding incl	mid	Understory sp:	
and Persoonia linearis. Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and	and lower	Hakea sericea	
linearis. Grasses incl Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and		and Persoonia	
Grouncovers: Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and		linearis.	
Grasses incl Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and		Grouncovers:	
Dianella and Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and		Grasses incl	
Lomandra. Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and		Dianella and	
Near roadway many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and seeding incl		Lomandra.	
many grasses established w Allocasaurina seedlings establishing Yes, many species flowering and seeding incl		Near roadway	
established w Allocasaurina seedlings establishing Yes, many species flowering and		many grasses	
Allocasaurina seedlings establishing Yes, many species flowering and seeding incl		established with	
		seedlings	
		establishing	
	Evidence of	Yes, many	
flowering and seeding incl	regeneration/seeding	species	
seedingincl		flowering and	
		seeding incl	

	Hakeas and	
	Acacia sp.	
	Many seedlings	
	emerging of	
	understory and	
	canopy species	
	especially	
	Allocasaurina sp.	
Evidence of	Ant activity noted	
biological nutrient		
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Many broadleaf	
	weeds	
	throughout this	
	stage.	

Tahmoor Coal	
REA Stage	Stage 12a
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	£W.

Visual assessment of Dr surface materials co	Comment	Location of	Co-ordinates	Photo No.	Action(s)
		Rehabilitation			Recommended
		Area			
	Dried grasses			See Folder:	
	cover the			W:\E&C\7	
(eg. Large rocks, su	surface. Fallen			Environment\19	
bare areas>0.1ha) bra	branches and			Rehab &	
e v	vegetative			Closure\2024_Rehab	
<u>""</u>	material are			Monitoring	
ad	adding to OM on			(Eco)\Rehab	
th	the surface.			Walkover\Photos	
os	Some rocks on	0 T V C+0 V D D			
ns	surface. Bare	REA Stage 12a			
ari	areas with no				
ca	canopy species				
;u(just grass sp.				
de	apparent.				
Evidence of erosion No	None				
(eg. Sheet, rilling,					
gullying and severity)					

Occurrence of	None	
potholing or		
slumping		
Evidence of	None	
spontaneous		
combustion		
Evidence of	None	
contamination or		
other limitations to		
vegetative		
establishment (eg.		
surface crusting,		
staining of soil		
surface etc.)		
Stability and function	Working and in	
of erosion and	order.	
sediment control		
structures		
Integrity of Water	No issues with	
Management	drainage or	
Structures (e.g.	contour banks.	
dams, drains,	No dams in this	
contour	stage.	
banks)		
Evidence of soil	Leaf litter and	
profile development	decomposition	
(e.g. leaf litter,	present, ie.	
decomposition,	Fallen branches,	
pedality	leaves etc	
etc.)		

ding ding	Evidence of poor	None noted	
rth stunting inspection. ence of plant None noted. eality or dieback ve Species Good diversity sity-evidence of throughout stage, especial apper benches ent in each Canopy sp: cum i.e. upper, Eucalyptus, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. ence of Yes, many species flowering and seeding incl Acacia sp. (Acacia sp. (Ac	Growth rates e.g.	during	
ence of plant Alback Species Good diversity re Species Good diversity styt-evidence of stage, especia throughout styframework stage, especia throughout stage, especia throughout stage, especia canopy sp: Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. ence of heration/seeding species flowering and seeding incl Acacia sp. (seeding) Many seedling emerging of understory and canopy specie	growth stunting	inspection.	
rality or dieback ve Species Good diversity rsity-evidence of throughout stage, especia especies ent in each canopy sp: cum i.e. upper, callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. ence of howering and seeding incl Acacia sp. (seeding) Many seedling emerging of understory and canopy species canopy specie	Evidence of plant	None noted.	
ve Species cood diversity resity-evidence of throughout stage, especial stage, especial upper benches can in each canopy sp: cum i.e. upper, callistemons and callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: character of Acacia species flowering and species flowering and seeding incl Acacia sp. (Acacia	mortality or dieback		
stity-evidence of throughout stage, especial stage, especial stage, especial stage, especial upper benchesent in each Canopy sp: Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Ence of Yes, many neration/seeding species flowering and seeding incl Acacia sp. (Acacia s	Native Species	Good diversity	
stage, especial stage, especial upper benches cannon sech canopy sp: cum i.e. upper, Eucalyptus, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: chee of Seeding species flowering and seeding incl Acacia sp. Many seedling emerging of understory and canopy species canopy species canopy species canopy species	diversity- evidence of	throughout	
re species ent in each canopy sp: cum i.e. upper, callistemons lower lower Allocasaurina Understory sp Acacia sp and Kunzea ambig Grass sp. ence of heration/seeding species flowering and seeding incl Acacia sp. (seeding) Many seedling emerging of understory and canopy specie	target/framework	stage, especially	
ent in each cum i.e. upper, callistemons lower lower lower lower lower lower lower Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. Grass sp. Fes, many neration/seeding species flowering and seeding incl Acacia sp.(seeding) Many seedling emerging of understory and canopy specie	native species	upper benches.	
lower lower lower Allocasaurina Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. Fres, many neration/seeding species flowering and seeding incl Acacia sp. (seeding) Many seedling emerging of understory and canopy specie	present in each	Canopy sp:	
lower Allocasaurina Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. Fres, many neration/seeding species flowering and seeding incl Acacia sp.(seeding) Many seedling emerging of understory and canopy specie	stratum i.e. upper,	Eucalyptus,	
and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. Yes, many Yes, many Reding species flowering and seeding incl Acacia sp.(seeding) Many seedling emerging of understory and canopy specie	mid	Callistemons	
Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp. Yes, many Yes, many Itowering and seeding incl Acacia sp. (seeding) Many seedling emerging of understory and canopy specie	and lower	and	
1/seeding		_	
7/seeding		Understory sp:	
n/seeding		Acacia sp and	
n/seeding		Kunzea ambigua.	
n/seeding		Grouncovers:	
n/seeding		Grass sp.	
	Evidence of	Yes, many	
flowering and seeding incl Acacia sp.(seeding) Many seedlings emerging of understory and canopy species	regeneration/seeding	species	
seeding incl Acacia sp.(seeding) Many seedlings emerging of understory and canopy species		flowering and	
Acacia sp.(seeding) Many seedlings emerging of understory and canopy species		seeding incl	
sp.(seeding) Many seedlings emerging of understory and canopy species		Acacia	
Many seedlings emerging of understory and canopy species		sp.(seeding)	
emerging of understory and canopy species		Many seedlings	
understory and canopy species		emerging of	
canopy species			
		canopy species	

Evidence of	Ant activity noted	
biological nutrient		
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Many broadleaf	
	weeds	
	throughout this	
	stage.	

REA StageStage 14 & 16 (upper and lower benches)Date of Inspection11/11/2024Inspected byNatalie BrumbySignatureImage: Properties of the prop	Tahmoor Coal	
		Stage 14 & 16 (upper and lower benches)
by	Date of Inspection	11/11/2024
Signature	Inspected by	Natalie Brumby
	Signature	

Inspection Item	Comment	Location of Rehabilitation Area	Co-ordinates	Photo No.	Action(s) Recommended
Visual assessment of surface materials and vegetative (eg. Large rocks, bare areas>0.1ha) adding to OM on the surface.	Fallen branches and vegetative material are adding to OM on the surface.	REA Stages 14 & 16 (upper and lower benches)		See Folder: W:\E&C\7 Environment\19 Rehab & Closure\2024_Rehab Monitoring	Bare areas to be additionally rehabilitated.

Tahmoor Coal Pty Ltd

	leaf litter	(Eco)/Rehab	
	accumulating in	Walkover\Photos	
	areas. Some		
	rocks on surface.		
	Bare areas		
	noted. Across all		
	stages.		
Evidence of erosion	None		
(eg. Sheet, rilling,			
gullying and severity)			
Occurrence of	None		
potholing or			
slumping			
Evidence of	None		
spontaneous			
combustion			
Evidence of	None noted.		
contamination or			
other limitations to			
vegetative			
establishment (eg.			
surface crusting,			
staining of soil			
surface etc.)			
Stability and function	Working and in		
of erosion and	order. In good		
sediment control	condition.		
structures			
Integrity of Water	No issues with		
Management	drainage or		

dems, drains, No dams in contour these stages. banks) Evidence of soil Leaf litter and profile development decomposition (e.g. leaf litter, present, ie. decomposition, leaves etc ecomposition, leaves etc etc.) Evidence of poor None noted Growth rates e.g. during jowth stuting inspection. Evidence of plant None noted. Bowth stuting inspection. Evidence of plant None noted. Marive Species Good diversity diversity or dieback upper benches. Native Species Good diversity attention and lower and callistemons and lower and callistemons and lower Altocasaurina sp. Understory sp: Acacia sp and Kurzea ambigua. Grouncovers: Grouncovers: Grouncovers: Grouncovers: Grouncovers: Grouncovers: Grouncovers:	Structures (e.g.	contour banks.	
these stages. nce of soil Leaf litter and e development decomposition eaf litter, Eallen branche lity nce of poor None noted during th rates e.g. inspection. nce of plant None noted. ality or dieback Good diversity sity-evidence of throughout stage, especies upper benches state in each Canopy sp: Lyframework stage, especies upper benches and in each Canopy sp: Lyframework stage, especies appecies and in each Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	dams, drains,	No dams in	
nce of soil Leaf litter and decomposition and litter, present, ie. Fallen branche lity leaves etc lity leaves e.g. inspection. Ince of plant leaves e.g. Canopy sp: lity-evidence of leaves especies leaves e.g. leave	contour	these stages.	
nce of soil Leaf litter and edevelopment decomposition present, ie. mposition, Eallen branche lity lity leaves etc litty lity leaves etc during inspection. None noted during inspection. None noted ality or dieback e Species Good diversity sity-evidence of throughout stage, especies can in each callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	banks)		
e development decomposition eaf litter, present, ie. Fallen branche lity leaves etc lity leaves etc during in spection. None noted during in spection. None noted lity or dieback e Species Good diversity sity-evidence of throughout stage, especies upper benches appecies and in each callistemons and callistemons and short sity sity sity in each callistemons and callistemons and short sity sity sity in each callistemons and callistemons and callistemons and short sity sity sity sity sity exidence and short sity sity exidence ambig Grouncovers: Grass sp.	Evidence of soil	Leaf litter and	
mposition, Fallen branche lity Ility ne of poor None noted during inspection. Ince of plant None noted. Ince of plant Stage. especies in the ach stage, especies appecies. In in each Canopy sp. In in each Canopy sp. In in each Callistemons and Allocasaurina Understory sp. Acacia sp and Kunzea ambig Grouncovers: Grass sp.	profile development	decomposition	
Ity leaves etc lity leaves etc Ince of poor linspection. Ince of plant lin	(e.g. leaf litter,	present, ie.	
lity nce of poor th rates e.g. in spection. nce of plant None noted. None noted. None noted. Cood diversity sity-evidence of throughout stage, especies candinations numi.e. upper, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	decomposition,	÷.	
nce of poor th rates e.g. h stunting in spection. nce of plant nce of plant nce of plant None noted. ality or dieback e Species cood diversity sity-evidence of throughout sity-evidence of throughou	pedality	leaves etc	
ence of poor wth rates e.g. th stunting ence of plant ve Species ve Species traity or dieback ve Species ve Species traity-evidence of throughout strithramework stage, especie upper benche canopy sp: cum i.e. upper, callistemons lower Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	etc.)		
wth rates e.g. during inspection. ence of plant None noted. tality or dieback ve Species Good diversity sity-evidence of throughout straity-evidence of thr	Evidence of poor	None noted	
th stunting inspection. ence of plant None noted. tality or dieback we Species Good diversity rsity-evidence of throughout styframework stage, especia styframework stage, especia ent in each Canopy sp: cum i.e. upper, Callistemons lower and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grans sp. Grass sp.	Growth rates e.g.	during	
ence of plant tality or dieback ve Species Good diversity rsity-evidence of throughout styframework stage, especie te species ent in each ent in each canopy sp: can i.e. upper, callistemons lower Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	growth stunting	inspection.	
rality or dieback ve Species Good diversity rsity- evidence of throughout st/framework stage, especia stage, especia upper benches ent in each canopy sp: cum i.e. upper, callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	Evidence of plant	None noted.	
ve Species cood diversity stript-evidence of throughout styframework stage, especies upper benchement in each canopy sp: cum i.e. upper, callistemons lower and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	mortality or dieback		
rsity-evidence of throughout stage, especial stage, especial upper benchement in each Canopy sp: Eucalyptus, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grass sp.	Native Species	Good diversity	
stage, especie le species upper benches ent in each Canopy sp: cum i.e. upper, callistemons lower and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	diversity- evidence of	throughout	
re species upper benchesent in each Canopy sp: cum i.e. upper, Eucalyptus, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grass sp.	target/framework	stage, especially	
ent in each Canopy sp: :um i.e. upper, Eucalyptus, Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	native species	upper benches.	
callistemons lower Allocasaurina Understory sp Acacia sp and Kunzea ambig Grass sp. Grass sp.	present in each	Canopy sp:	
Callistemons and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	stratum i.e. upper,	Eucalyptus,	
and Allocasaurina Understory sp Acacia sp and Kunzea ambig Grouncovers: Grass sp.	mid	Callistemons	
Allocasaurina sp, Understory sp: Acacia sp and Kunzea ambigua. Grouncovers: Grass sp.	and lower	and	
Understory sp: Acacia sp and Kunzea ambigua. Grouncovers: Grass sp.		_	
Acacia sp and Kunzea ambigua. Grouncovers: Grass sp.		Understory sp:	
Kunzea ambigua. Grouncovers: Grass sp.		Acacia sp and	
Grouncovers: Grass sp.		Kunzea ambigua.	
Grass sp.		Grouncovers:	
		Grass sp.	

Evidence of	Yes, many	
regeneration/seeding species	species	
	flowering and	
	seedingincl	
	Hakea a sp.	
	Many seedlings	
	emerging of	
	understory and	
	canopy species	
Evidence of	Ant activity noted	
biological nutrient		
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Many broadleaf	
	weeds	
	throughout this	
	stage.	

lahmoor Coal	
REA Stage	Stage 17
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	\mathcal{M}

Inspection Item	Comment	Location of	Co-ordinates	Photo No.	Action(s)
		Rehabilitation			Recommended
		Area			
Visual assessment of	Section approx.			See Folder:	Bare areas to be
surface materials	2 yrs old. Some			W:\E&C\7	additionally
(eg. Large rocks,	rocks on surface.			Environment\19	rehabilitated.
bare areas>0.1ha)	Bare areas			Rehab &	
	noted.			Closure\2024_Rehab	
				Monitoring	
				(Eco)\Rehab	
				Walkover\Photos	
Evidence of erosion	Yes there is				Additional drains
(eg. Sheet, rilling,	some erosion				would help to
gullying and severity)	noted on the				reduce future
	northern-batters	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			issues.
		NEA Stage 17			Remediation
		(riewty			needed.
Occurrence of	None	estabulsning)			
potholing or					
slumping					
Evidence of	None				
spontaneous					
combustion					
Evidence of	None noted.				
contamination or					
other limitations to					
vegetative					
establishment (eg.					
surface crusting,					

staining of soil		
surface etc.)		
Stability and function	Additional	
of erosion and	needed. No	
sediment control	contour drains	
structures	installed.	
Integrity of Water	Lower drain in	
Management	good condition,	
വ്	however small	
dams, drains,	amount of	
	erosion noted in	
banks)	a section in the	
	north-west. No	
	dams in this	
	stage.	
Evidence of soil	Branches placed	
profile development	across batter to	
(e.g. leaf litter,	reduce erosion	
,'	and act as	
pedality	microhabitats,	
etc.)	working well to	
	capture	
	sediment and	
	vegetative	
	material,	
	however erosion	
	still occurring.	
Evidence of poor	None noted	
Growth rates e.g.	during	
growth stunting	inspection.	

Evidence of plant	None noted.	
mortality or dieback		
Native Species	Many Acacia sp	
diversity- evidence of	currently	
target/framework	dominating this	
native species	stage.	
present in each	Canopy sp:	
stratum i.e. upper,	Eucalyptus and	
mid	Acacia sp	
and lower	(Acacia very	
	abundant),	
	Understory sp:	
	Acacia sp.	
	Grouncovers:	
	Kennedia	
	rubicundra,	
	grasses.	
Evidence of	Kenedia	
regeneration/seeding	rubicundra	
	flowering.	
Evidence of	None noted.	
biological nutrient		
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Many broadleaf	
	weeds	
	throughout this	
	stage.	

Tahmoor Coal	
REA Stage	Stage 8
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	t M

Inspection Item	Comment	Location of	Co-ordinates	Photo No.	Action(s)
		Rehabilitation			Recommended
		Area			
Visual assessment of	Good amount of			See Folder:	
surface materials	leaf litter			W:\E&C\7	
(eg. Large rocks,	accumulating in			Environment\19	
bare areas>0.1ha)	areas. Some			Rehab &	
	rocks on surface.			Closure\2024_Rehab	
	Bare areas			Monitoring	
	noted.			(Eco)\Rehab	
		0 C C C C C C C C C C C C C C C C C C C		Walkover\Photos	
Evidence of erosion	None	REA Stage 6 (1 yr			
(eg. Sheet, rilling,		otd reflab)			
gullying and severity)					
Occurrence of	None				
potholing or					
slumping					
Evidence of	None				
spontaneous					
combustion					

Evidence of	None noted.	
contamination or		
other limitations to		
vegetative		
establishment (eg.		
surface crusting,		
staining of soil		
surface etc.)		
Stability and function	Working and in	
of erosion and	order. In good	
sediment control	condition.	
structures	Additional Coir	
	logs placed in	
	drains at north of	
	stage.	
Integrity of Water	No issues with	
Management	drainage or	
Structures (e.g.	contour banks.	
dams, drains,	No dam in this	
contour	stage.	
banks)		
Evidence of soil	Leaf litter and	
profile development	decomposition	
(e.g. leaf litter,	present.	
decomposition,	Logs placed	
pedality	across contours,	
etc.)	helping to	
	accumulate	
	material and soil	
	and creating	
	micro ecosystem	

	with newly	
	emerging	
	seedlings	
	present	
Evidence of poor	None noted	
Growth rates e.g.	during	
growth stunting	inspection.	
Evidence of plant	None noted.	
mortality or dieback		
Native Species	Canopy sp:	
diversity- evidence of	Acacia sp	
target/framework	Understory sp:	
native species	Acacia and	
present in each	Hakea sp.	
stratum i.e. upper,	Grouncovers:	
mid	Kennedia	
and lower	rubicundra,	
	Hardenbergia	
	and Grass sp.	
Evidence of	Too young	
regeneration/seeding		
Evidence of	Ant activity noted	
biological nutrient		
cycling		
in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Many broadleaf	
	and nightshade	
	weeds	

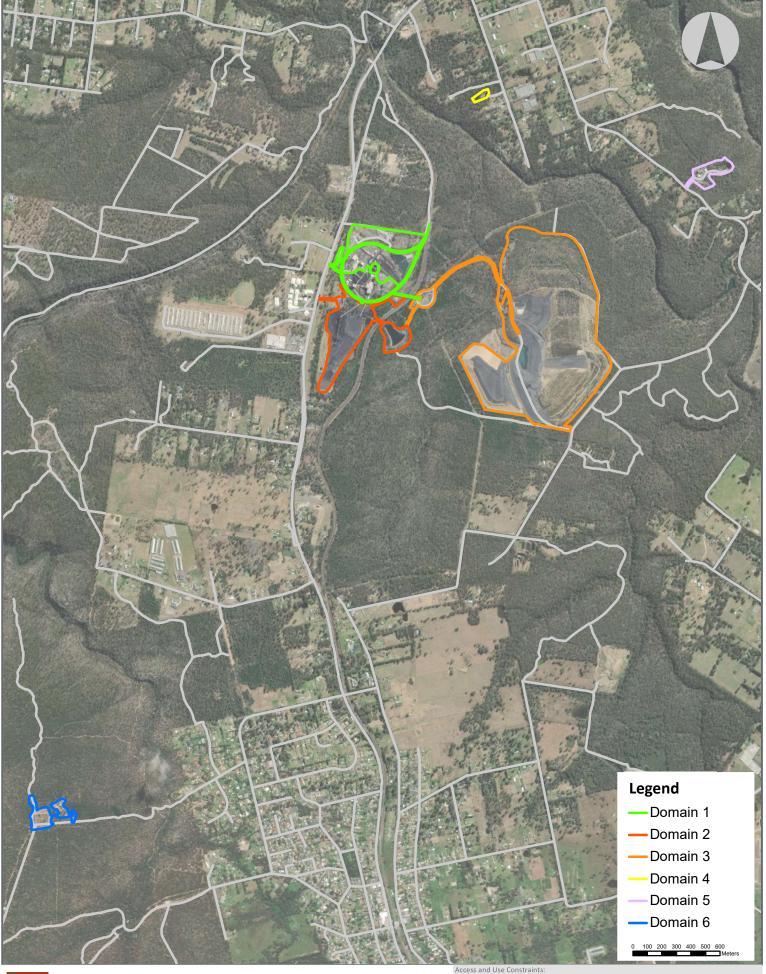
throughout this		
stage.		

Tahmoor Coal	
REA Stage	No.2 Shaft 11KV Underground Powerline Corridor
Date of Inspection	11/11/2024
Inspected by	Natalie Brumby
Signature	PM

Inspection Item	Comment	Location of	Co-ordinates	Photo No.	Action(s)
		Rehabilitation			Recommended
		Area			
Visual assessment of Good amount	Good amount of		34.24841*,	See Folder:	
surface materials	leaf litter		150.58797*	W:\E&C\7	
(eg. Large rocks,	accumulating in		271m elevation	Environment\19	
bare areas>0.1ha)	areas. Shrubs			Rehab &	
	and forbes well			Closure\2024_Rehab	
	established. No	No.2 Shaft 11KV		Monitoring	
	significant bare	Underground		(Eco)\Rehab	
	areas.	Powerline		Walkover\Photos	
	Logs, and scat	Corridor			
	noted.				
Evidence of erosion	None				
(eg. Sheet, rilling,					
gullying and severity)					

potholing or slumping Evidence of Spontaneous combustion Evidence of None noted. contamination or other limitations to vegetative establishment (eg. surface erusting, staining of soil surface etc) Stability and function Good of erosion and establishment of sediment control vegetation. Logs, structures routrol vegetation. Logs, structures rocks helping process. Integrity of Water No issues with Management drainage or Structures (e.g. No dam in this contour Structures (e.g. No dam in this stage. banks) Evidence of soil Leaf litter and profile development scat helping with accumulation of spontant spantant scat helping with	Occurrence of None		
us in if tion or ations to ations to soil soil water and control sonts in he i	otholing or		
us in in if tion or ations to ations to soil soil Water int (e.g. ns,	lumping		
us If tion or ations to nent (eg. usting, soil soil water and water ontrol ns, ns,			
tion or ations to ations to soil soil Water and control sont (e.g. ns, ns, ns, lefsoil	pontaneous		
tion or ations to sent (eg. usting, soil soil sontrol water and sont (e.g. ns,	ombustion		
tion or ations to sent (eg. usting, soil control and water and water ant (e.g. ns, ns,		noted.	
nent (eg. Lasting, soil soil control Water int (e.g. ns,	ontamination or		
nent (eg. usting, soil) Id function and control water int (e.g. ns,	ther limitations to		
g, g, ol ol er ment	egetative		
g, ol ol er ment	stablishment (eg.		
ol er ment	urface crusting,		
ol ol er er ment	taining of soil		
ol er l	urface etc.)		
ol er ment			
ol er hent		lishment of	
er L ment		ation. Logs,	
er (ment		radient and	
er L ment	rocks	helping	
er (ment	proce	ss.	
l ment		sues with	
l ment		age or	
rains, e of soil evelopment		our banks.	
e of soil evelopment	rains,	am in this	
ce of soil development			
		s and	
	banks	s stable.	
		itter and	
accumulation of		nelping with	
	accun	mulation of	
organic matter.	organi	ic matter.	

(e.g. leaf litter, decomposition, pedality etc.)		
Evidence of poor Growth rates e.g. growth stunting	None noted during inspection.	
Evidence of plant mortality or dieback	None noted.	
Native Species diversity- evidence of target/framework	Canopy sp: Eucalyptus sp and Acacia sp	
	Understory sp: Acacia, Kunzea	
stratum i.e. upper, mid	ambigua and Hakea sp.	
and lower	Grouncovers: Kennedia rubicundra, Hardenbergia and Grass sp.	
Evidence of regeneration/seeding	Fruiting and seeding occurring on some shrubs and grasses	
Evidence of biological nutrient cycling	Ant mounds and activity, and termite mounds noted	


in Native		
woodland/forest		
areas e.g.		
puff balls		
List Other(s)	Some litter noted	To be remediated
	on slope	

APPENDIX 8

simecgfg.com

Closure Domains

Access and use constraints:
This webmap is intended to be used by SIMEC Mining and other stakeholders involved in
the development and operation of SIMEC Mining's mines.

Access to this webmap is restricted to users authorised by SIMEC Mining only. You may
not reproduce, adapt, modify, communicate or use any part of this webmap other than
for activities related to development and operation of SIMEC Mining's mines.

The data displayed in this webmap has been collated from various sources.

The source data may contain inconsistencies or omissions, may not be to scale, may not be current and may present indicative information only. SIMEC Mining does not warrant the accuracy or completeness of the contents of this webmap.